java有这样一组数列: 1/2,1/4,2/6,3/8,5/10,8/12.....,统计前20项之和,精确到gps 小数点6位 精确度

当前位置:
>>>请将1、2、3、4、5、6、8、9、10、12这10个数填入右图圆圈中,每..
请将1、2、3、4、5、6、8、9、10、12这10个数填入右图圆圈中,每个数用一次,使得每条线上4个数的和都相等.
题型:填空题难度:中档来源:不详
每条线上的和是:(1+2+3+4+5+6+8+9+10+12)×2÷5=24;假设,5个顶点数是较小的,即1,2,3,4,5;又因为1+3+8+12=24,1+4+9+10=24;那么5个顶点,1与3在一条线上,1与4在一条线上;那么2与5在一条线上;因为每条线上的和是24,是一个偶数,根据奇数+奇数=偶数,也就是每条线上要么有2个奇数,要么没有奇数;那么3与5一条线上,2与4在一条线上;可以确定5个顶点的数是:;还有一个奇数9,只能在1、4与2、5相交的点上,即:;又因为1+9+4+10=24,5+9+2+8=24;那么1、9、4线上最后一个圆圈填10;5、9、2线上最后一个圆圈填8,即:;又因为1+8+3+12=24;确定1、8、3线上最后一个圆圈填12;5+10+3+6=24,确定5、10、3线上最后一个圆圈填6;即:.
马上分享给同学
据魔方格专家权威分析,试题“请将1、2、3、4、5、6、8、9、10、12这10个数填入右图圆圈中,每..”主要考查你对&&&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
发现相似题
与“请将1、2、3、4、5、6、8、9、10、12这10个数填入右图圆圈中,每..”考查相似的试题有:
932821933786934701932448932012933959学习卡使用时间剩余(天):
问题名称:找规律:2 ,-4 ,6 ,-8,10 , -12 , 14, ......
5, -1,9 ,-5,13,-9,17 ,.......
6,-12 ,18, -24, 30, -36, 42,......
在第三行中是否存在这样的连续三个数,使得他们的和为54,若存在,求出这三个数,若不存在,请说明理由:
是否存在这样的一列,使得该列的三个数字之和为103,若存在,求出这三个数,若不存在,请说明理由:
在第一行取第N个数,第二行中取第N+1个数,第三行中取第N+2个数,是否存在这样的N,使
2 ,-4 ,6 ,-8,10 , -12 , 14, ......
5, -1,9 ,-5,13,-9,17 ,.......
6,-12 ,18, -24, 30, -36, 42,......
在第三行中是否存在这样的连续三个数,使得他们的和为54,若存在,求出这三个数,若不存在,请说明理由:
是否存在这样的一列,使得该列的三个数字之和为103,若存在,求出这三个数,若不存在,请说明理由:
在第一行取第N个数,第二行中取第N+1个数,第三行中取第N+2个数,是否存在这样的N,使得这三个数字之和为-117,若存在,求出N的值,若不存在,请说明理由:
收到的回答: 1条
teacher069
解:根据题意,可以归纳出规律。
第一行:(-1)^(n+1)(2n)
第二行:当n是偶数时,-(4n-3);当n是奇数时,4n+1
第三行:(-1)^(n+1)(6n)
设存在这个数,若为偶数,则分别代入,三行所取的数分别为:-2n,-4n+3,-6n。有-12n+3=-117,n=10.
当n是奇数时,三个数分别为:2n,4n+1,6n,有12n+1=-117,不符合
所以存在n=10
点击上传文件
注意:图片必须为JPG,GIF,PNG格式,大小不得超过2M
Copyright(C)2015
All Rights Reserved
北京博习园教育科技有限公司把正整数列按如下规律排列:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,…问:(I)此表第n行把正整数列按如下规律排列:1,2,3,4,5,6,7,8,9-知识宝库
你可能对下面的信息感兴趣观察这一列数,然后回答问题:-1/2,1/4,-1/6,1/8,-1/10,1/12,···1.写出第7个数和第8个数.2.第2011个数是什么?3.如果这样无限地排下去,会与哪个数越来越接近?
1,第7个是-1/14
第8个是1/162,-1/40223,0公式是(-1)x次方/2X
为您推荐:
其他类似问题
1:第7个数-1\14第8个数1\162:-1\40223:0
扫描下载二维码1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
<meta name="title" content="An inequality: 1/2*3/4*5/6* ... 99/100
An Inequality:
$\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots\cdot\frac{99}{100} < \frac{1}{10}$
A product of fractions $\displaystyle \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots\cdot\frac{2n-1}{2n}$ is on the left-hand side of several inequalities: one with a beautiful proof, one that strengthens the former but is virtually impossible to prove, and a third, even stronger, with an elementary proof.
Try your hand with the simplest variation:
$\displaystyle \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots\cdot\frac{99}{100} \lt\frac{1}{10}.$
Copyright &
Denote the left-hand side of the inequality A:
$\displaystyle A = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots \cdot\frac{99}{100}.$
And introduce its nemesis $B$:
$\displaystyle B = \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\ldots\cdot\frac{98}{99}.$
Factor by factor, the fractions in $B$ exceed those in $A:$
$\displaystyle \frac{2}{3} \gt \frac{1}{2},$ $\displaystyle \frac{4}{5} \gt \frac{3}{4},\ldots,\frac{98}{99} \gt \frac{97}{98},$ $\displaystyle 1 \gt \frac{99}{100}.$
From this it follows that $A \lt B.$ Note that, due to the choice of $B,$ in the product $AB$ most of the terms cancel out: $\displaystyle AB = \frac{1}{100}.$ From here,
$\displaystyle A^{2} \lt
AB = \frac{1}{100},$
which, with one additional step, proves (1).
This proof suggests that (1) is in fact just a special case of a more general inequality
$\displaystyle \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots \cdot\frac{2n-1}{2n} \lt \frac{1}{\sqrt{2n}},$
whose proof is a slight modification of the above with $A$ and $B$ defined as
$\displaystyle A(n) = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots
\cdot\frac{2n-1}{2n},\\
\displaystyle B(n) = \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\ldots \cdot\frac{2n-2}{2n-1}.$
As we shall see shortly, (1) and (2) are quite weak: $A(n)$ has a much better bound, viz.
$\displaystyle A(n) \lt\frac{1}{\sqrt{3n+1}}.$
(3) supplies an edifying curiosity. By itself, it is easily proved by . However, its weakened version
$\displaystyle A(n) \lt\frac{1}{\sqrt{3n}},$
as far as I know, does not submit to an inductive proof. Try it, by all means. (3) and (3') are often quoted as a pair of problems of which the harder one has a simpler proof.
Meanwhile here's a .
Copyright &
To remind,
$\displaystyle A(n) = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\ldots
\cdot\frac{2n-1}{2n}$
and we wish to prove (3): $\displaystyle A(n) \lt\frac{1}{\sqrt{3n+1}}.$ For $n = 1,$ we have
$\displaystyle A(1) = \frac{1}{2} = \frac{1}{\sqrt{3\cdot 1+1}}.$
But already for $n = 2,$
$\displaystyle A(2) = \frac{1}{2}\cdot\frac{3}{4} = \frac{3}{8} \lt\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{3\cdot 2+1}},$
because upon squaring $\displaystyle \frac{9}{64} \lt\frac{1}{7},$ for $7\cdot 9 = 63 \lt 64.$ Thus let's proceed with the inductive step and assume that (3) holds for $n = k:$
$\displaystyle A(k) \lt\frac{1}{\sqrt{3k+1}}.$
We are going to prove that, for $n = k+1,$ (3) also holds
$\displaystyle A(k+1) \lt\frac{1}{\sqrt{3(k+1)+1}} =\frac{1}{\sqrt{3k+4}}.$
Since $\displaystyle A(k+1) = A(k)\cdot\frac{2k+1}{2k+2},$ (4) implies
$\displaystyle A(k+1) \lt\frac{2k+1}{2k+2}\cdot\frac{1}{\sqrt{3k+1}}.$
Now square the right hand side in (6):
$\displaystyle \begin{align}
\left(\frac{2k+1}{2k+2}\cdot\frac{1}{\sqrt{3k+1}}\right)^{2}&= \frac{(2k+1)^{2}}{(2k+2)^{2}(3k+1)}\\
&= \frac{(2k+1)^{2}}{12k^{3} + 28k^{2} + 20k + 4}\\
&= \frac{(2k+1)^{2}}{(12k^{3} + 28k^{2} + 19k + 4) + k}\\
&= \frac{(2k+1)^{2}}{(2k+1)^{2}(3k+4) + k}\\
&\lt\frac{(2k+1)^{2}}{(2k+1)^{2}(3k+4)}\\
&= \frac{1}{3k+4},
\end{align}$
which is exactly the right-hand side of (5) and proves (6).
Curiously, a much weaker $\displaystyle A(n) \lt\frac{1}{\sqrt{n}}$ is still resistant to the inductive argument, whereas a stronger version $\displaystyle A(n) \lt\frac{1}{\sqrt{n + 1}}$ goes through without a hitch.
where mathematical induction applies easily to a stronger inequality and does not seem to work for a weaker one.)
References
A. Engel, , Springer Verlag, 1998, p. 180
D. Fomin,S. Genkin,I. Itenberg, , AMS, 1996, p. 90
S. Savchev, T. Andreescu, , MAA, 2003, p. 51
D. O. Shklyarsky, N. N. Chentsov, I. M. Yaglom, Selected Problems and Theorems of Elementary Mathematics, v 1, Moscow, 1959. (In Russian)
Copyright &
Disqus -->
Search by google:}

我要回帖

更多关于 精确到小数点后两位 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信