̖投影仪可以连接音响吗?

第三类立体电视笔者将其归类于立体显示技术的发展,既不管什么样的电视图像信号,通过此类显示器终端均可实现立体影象感觉。它是不依靠视觉假象,不用配带立体眼镜,让图像随着观察角度的不同而变化的立体电视技术,可使观众从任何角度看到的图像都是立体的。

  所谓3D立体显示是指能显示图像深度(第三维)效果,这将像我们看真实世界一样,是立体的。

  人眼如何能够识别立体图像呢?研究表明,人类是通过左眼和右眼所看到物体的细微差异来感知物体的深度的,从而感觉出物体的立体性。因此,在观看影视画面时只要准备两组拍摄位置稍微错开的图像分别供“左眼”和“右眼”观看,便可看到一组立体动感的画面,或显示器本身就是一个三维立体块,而不是一个二维平面。

  早在1903年,科学家就发现“视差创造立体”的原理。所谓“视差”,是指人的两个眼睛是从不同的角度观看世界的,就是说左眼看到的物体同右眼看到的同一物体相互之间有小小的差别,平均相差约6.5cm。由于两只眼睛看到的物体阴影有细微差别,因而描述场景轮廓的方式也不尽相同。大脑根据这两个有细微差别的场景进行综合处理,产生出精确的三维物体以及该物体在场景中的定位,这就是具有深度的立体感觉,如图1所示。

  立体成像系统的全部工作是对每个场景至少创造两张图像,一张代表人的左眼所看到的,另一张代表右眼看到的,这两张图像称为立体重叠图像(stereo pair);而立体放映系统必须使左眼只能看到左眼图像,右眼只能看到右眼图像。以前的立体电影和立体画片要借助双色眼镜、液晶快门眼镜、头戴式追踪装置(Head Trackers)、头盔或其他观赏工具才能使观看者产生立体感觉,非常麻烦。长期以来,人们一直在探索直接用裸眼观看立体图像的技术,并在近几年获得了实质性的进展。这些技术被统称为全真立体显示技术。

  现有的立体显示画面需要佩戴专门的立体眼镜才能实现,但佩戴立体眼镜一方面会使观看者感觉不方便;另一方面由于其满足两个心理和生理景深暗示(cue)——双目视差(binocular display)和会聚(convergence),从而导致与其他景深暗示,如适应性和运动视差间的差异。这种差异将导致人体产生疲劳和头晕,不便长期观看,更不利于一些人群,如老人、小孩观看。因此佩戴眼镜的3D显示被称为“十分钟媒体(ten minutes media)”。

  不戴眼镜的立体显示称为自动3D显示(AutoStereoScopic),也叫真3D显示。

  现在所谓的3D显示卡,确切地说应该是“三维立体影像的二维平面投影成像”显示卡,实际上是把3D的影像投影在2D的显示平面上,让人看起来“认为”是立体的而已。其显示器仍然是2D的,只能显示平面的影像。3D显示卡的作用只是用透视的方法,把立体影像转换成平面,再去显示出来。因此,这种影像本质上仍然是2D显示。人看到这种2D投影,其实分明知道是2D的,决不会跟真正的3D影像相混淆。只不过看到的影像类似于平面透视画,所以 “认为”它反映的是3D影像而已。

  电子全息术能完美记录和重现光波,从而产生3D效果。基于视频的全息技术尽管受到高度重视,但仍处于初期阶段。它的不足之处在于:成像需激光等苛刻条件,实现彩色和视频需巨大的存储和传输空间等。

  方向多路显示是应用光学现象,如衍射、反射、折射和开关等,把不同视觉的图像分别引导到人的两只眼睛。其相应的方法很多,比如,基于衍射的方法就有衍射光学元件方法(Diffraction-Optical Elements,DOE)、全息光学元件方法(Holographic Optical Elements,HOE)。更多的方法是采用回射(retro-reflection)屏来分离左右眼图像光,使其左右眼图像分别进入左右眼,如基于开关方法的3D显示有隔离栅(barrier-grid)显示、视差(parallax-illumination)显示和移动细缝(moving- slit)显示。各种2D直视和投影显示,如CRT、LCD和DMD(数字微镜显示),都能采用多方向原理实现3D显示。

  体块3D显示是指图像显示在一个真实的立体空间中,这个立体空间可以是透明的发光体,可以是旋转的显示屏形成的立体空间,或是二维图像通过移动镜子(varifocal mirror)或变焦透镜(varifocal lens)产生深度效果实现3D显示。体块3D显示能够提供满足人体对立体深度的所有暗示,类似于人们对自然物体的立体感,因此不会造成观众的视疲劳。

全真立体显示的主要技术及产品

1. 用栅栏控制左右图像的射向

  成立于1986年的美国DTI公司通过十多年来在光学、视觉心理学、电子学、计算机软件和其他许多关键学科方面的研究,开发出一系列称为“虚拟窗”的平板立体液晶显示器。2001年,其15英寸的立体液晶显示器售价已降到1700美元(见图2)。DTI采用的是视差发光格栅(illumination pattern)方案,通过液晶显示屏后面一套特殊的光学装置和一块发光的格栅控制光线的射向。用过“虚拟窗”的人都说,“迎面开来的汽车好像冲到了自己的鼻子前”。至2001年中期,DTI公司在这方面获准的专利已有13项。

显示屏:15英寸LCD

  2002年9月27日,夏普与夏普欧洲研究所(英国)宣布开发成功无需专用眼镜也能看到立体图像,并可以从立体到平面显示进行切换的液晶显示器,如图3所示。这种显示器采用了视差栅栏(parallax barrier)立体显示技术,通过在现有的TFT-LCD上配备一个“开关液晶”实现三维显示。开关液晶是一种细长的有遮光槽的液晶片,用来分隔光的传播路径,让代表左右立体重叠图像的信息分别聚焦于观看者的左眼和右眼。两种立体重叠图像合到一起就产生了三维效果。当开关液晶关闭时,原来遮光部分转为透明,到达左眼和右眼的图像一致,就恢复到普通的2D平面显示。该公司已在2003年推出产品,其目标是进一步降低20%的成本,将价格控制在比普通显示器只贵50%左右。

图3 夏普15英寸3D液晶显示器

  三洋电机于2002年10月开发成功能够利用多视角来显示立体影像的50英寸等离子(PDP)显示器,如图4所示。它采用在图像显示屏前放置一块带有小孔的面板,将立体图像的左右部分隔离并定向传送到观看者的左右眼,通过视差产生三维虚拟图像。通常,立体显示器是通过左、右眼两个视角综合后产生立体映像的,但三洋开发的显示器显示有4个视角的图像。通过这些相邻图像的两两组合,无论从正面还是稍稍偏右或偏左的角度,都可裸视到不同立体效果的图像。提供放映的立体图像是用4个横向排列的摄像机摄制的,再通过强大的PC综合系统组合在每4个一组的像素列中。由于观看者的视角没有这么宽,往往引起水平方向的图像质量下降,为此,他们采取像素排列逐步向对角线倾斜的阶梯办法,再由一个针孔阵列屏将逐步倾斜的像素导向观看者,提高了水平显示的质量。据三洋公司说,虽然立体图像要用许多摄像机拍摄,制作成本很高,但对于立体电视接收机来说,其针孔板的结构并不复杂,价格不会很贵,只要立体接收机用户普及了,制片的成本分摊后并不多。该公司已向市场发放样机,以进一步取得市场需求信息。

  多透镜立体显示1932年就已问世,它是利用视差的原理制作立体卡片。提供这种方式放映的立体重叠图像一般呈条纹状,并在显示屏前增加了一个多透镜屏。多透镜屏由一排垂直排列的半圆形柱面透镜组成,依靠每个柱面镜头的折射,使右眼图像聚焦于观看者右眼,左眼图像聚焦于观看者左眼,从而不需要立体眼镜就能产生立体幻像。

  美国Toppan公司开发的高分辨率立体显示器也使用了这种结构。多透镜的特点是产生的图像多彩自然,适宜于大屏幕显示。目前运用最精密的成形手段,使每个透镜的截面达到了微米级;而通过数字处理,色度亮度干扰大为减少,使条纹状立体图像制作得更加精细,立体图像的再现质量比以前提高了1倍,从而使高清晰度的立体电视成为现实。

  2003年4月,在东京BigSight“3D联盟”搭建的展台上,三星电子展出的21英寸立体显示液晶面板有16个视点(水平和垂直方向各4个),也是通过采用微透镜阵列实现的。与三洋电机4个视点和夏普2个视点的液晶面板相比,三星电子的视点数量明显增多。看过三星产品后,有人觉得“从斜向也能够看到三维图像”,也有人觉得“图像清晰度太低”,清晰度低的原因估计是由于增加视点数所造成的。

3.用两个投影机投射左右图像

  日本NHK科技研究所等公司还用两架LCD或CRT背投机同时向多透镜平面分别投射左右眼立体重叠图像,制成了大屏幕的立体显示器。

图5 在波士顿召开的SID 2002上,DDD公司展示了不需戴眼镜也能呈现3D效果的电视,该产品取名为“TriDef 3D”电视系统。

  日立研究所则开发出使用2台投影仪的正投式立体显示器。他们采用高亮度节电型“指向性反射屏幕方式”,在屏幕上投射两个错开的图像,分别对应左右两眼的焦点,以此来实现立体图像的视觉效果。其实施方案为:2台投影仪以两眼间距的间隔并排向屏幕上投影。屏幕是由水平方向上向投影仪位置聚光的“反射板”和仅在垂直方向上散射光的“透镜板”组成。根据这一结构,投射的图像只能在水平方向上的特定位置反射或聚光。因此,2台投影仪如果保持两眼间距的话,投射的图像就会分别在左右两眼形成错开的焦点。

4. 3D显示的软件方案

  在当今多媒体时代,用平面显示器显示立体图像无疑是一项不可缺少的技术,因为它不仅可再现生动的立体景象,还可以精确地描绘物体的全面信息。除了应用于广告和娱乐产品,在教育、医学等其他领域也有广泛的应用前景。但是,目前现成的立体影片几乎为零,除了格式的原因,主要是制片复杂,花费巨大,每个场景至少要用9部不同的摄像机同时工作。没有节目软件,制造商也就不会贸然大批量生产立体电视机。为此,美国加州的Dynamic Digital Depth(DDD)软件公司正着手从两个方面解决这个“先有蛋还是先有鸡”的问题:一是先将现有的2D影片转换成立体图像;二是将立体数据压缩成标准的传播格式,使之能通过现有的广播技术播放或能制作成DVD等载体。

  DDD公司采用深度映射(depth map)技术将每帧图像加上阴影信息。当然,最初的工作应该由艺术家来完成。完成这项工作的过程是,先将每一特定场景的第一帧和最后一帧图像加上各种暗示距离和定位的灰度与阴影信息编码,再扩展到该场景的其他中间过程。例如,一个人站在原野上,假定人是白色的,地平线是黑色的,当人的镜头向观众拉近时,人与地平线之间的所有物体都会产生灰度和阴影的变化。通过运算法则,计算出第一和最后一帧图像的深度数据,再根据场景中所有物体和观看者的关系进行精确处理,得出不同深度的灰度和阴影编码,最后得到整个场景的深度映射图。处理完成后,再压缩成标准的载体格式。这种媒体用机顶盒或其他硬件解压缩后就能在立体电视接收机上回放。DDD公司采用MPEG格式将这项技术用于数字电视上时,仅在原来2D图像的基础上增加4%的信息。据说,目前处理一部较长影片的代价约百万美元。

  此外,在东京展示会上,软件开发商Mercury Sunday公司演示了可立即将平面图像转换成三维图像的软件。该公司使用数码摄像机和三维液晶的笔记本电脑(夏普生产的样机,如图6所示),实时将拍摄的平面图像转换成三维图像显示。据介绍,如果微处理器的工作频率达到2GHz的话,它能够以27帧/秒的速度播放三维图像;如果把三维转换软件嵌入到专用的图像处理芯片中,播放速度将会远远超过30帧/秒。看来,有了这种软件,将以前的影片转换成立体显示已不成问题,从而也解决了立体电视的片源问题。

图5 在IFA 2003展会上,飞利浦公司展示了与E-Ink合作开发的采用电子墨水技术的电子纸。

  从20世纪80年代起,日本、韩国、欧美等国家和地区就开始了3D显示的基础研究,并在90年代陆续获得成果。本世纪初,各国斥巨资继续加强3D显示的研究。在3D显示技术市场中,目前日本厂商处于领先地位。2002年3月上市的三洋电机50英寸3D液晶显示器,即使斜着观看也可以欣赏到立体图像。目前,中国在该领域的研究相当薄弱,应加大研究的力度。

  为了促进3D显示器以及周边影像内容的开发,2003年3月4日,在夏普、三洋电机、索尼、NTT数据、伊藤忠商社等5家公司的发起下,联合软硬件制造商、出版社、报社等70家单位在日本成立了“3D联盟(3D Consortium)”。在不到两年时间内,陆续吸引了大量的厂商加盟,目前3D联盟的成员已达100多家,DTI公司也于近期加入该联盟。“3D联盟”无疑将加速立体电视的进展。

  经过各国多年的研发,立体显示技术目前已达到一定水准,国外已有部分相关产品上市,如3D TV 及3D手机,目前甚至有可在2D和3D之间切换的产品。越来越多的新一代显示技术和高清晰的显示产品在不断地改变着人类的生活方式和生活品质。 全真立体电视是我国的叫法,国外叫立体电视或三维电视。

   立体电视又称为三维电视(3D TV),准确的术语应该是“Stereoscopies Television”,它与现行电视的主要区别是,现行电视只传送一个平面的信息,而立体电视传送的是物体的浓度信息,立体电视与立体电影的原理大体相同,它也是利用人眼的立体视觉特性来产生立体图像的。

   人眼的立体视觉特性是立体电视与立体电影的共同基础。人类在观看周围世界时,不仅能看到物体的宽度和高度,而且能知道它们的深度,能判断物体之间或观看者与物体之间的距离。这种三维视觉特性产生的主要原因是:人们通常总是双目同时观看物体,而由于两只眼睛视轴的间距(约65 mm),左眼和右眼在看一定距离的物体时,所接收到的视觉图像是不同的,因而大脑通过眼球的运动、调整,综合了这两幅图像的信息,产生立体感。在单用左眼和右眼观看物体时,所产生的图像移位感觉就叫视差。理论分析可知,在没有任何工具的情况下,人眼可看到立体物体的最远距离不超过1 km。由经验得知,人的立体视觉还不是绝对靠视差,一只眼睛的人同样能判断物体深度和距离,他们主要是靠光线明暗、物体的相对尺寸、清晰程度、运动速度等来进行判断的,把眼球视线凝视于一点或一小区域后,利用眼睛上下左右转动来对物体上下、左右、前后扫描观察,以便使物体能在眼球运动、肌肉做功过程中,获得多幅稍有差别的物体图像信息,通过长期以来所积累的观察事物的经验进行判断等就足可获得立体感,由此可见,两只眼睛观察观看同一物体的视觉信号,可以获得立体感,而用一个眼睛对同一物体从两个稍有差别的观察点来获得图像信息,也能使人获得立体感。

 立体摄像机具有两个镜头和两个摄像器件,用来代替人的两只眼睛摄取图像,两个镜头之间的距离及其光轴之间的夹角和距离必须模仿人的两个眼球动作,随着拍摄物体的距离变化不断进行调整,以使拍摄的两个图像的视差与人眼直接观看的视差相同。立体摄像机输出的左右两个图像信号需用2个通路传送到显像端,一般不能简单地用一个频道传送一套立体电视节目,必须采取频带压缩或码率压缩等方法才能用普通电视频道传送立体电视节目。立体电视的显像端必须分别显示左右两个图像,并确保左眼只能看见左眼图像,右眼只能看见右眼图像。

 2 立体电视的实现方式

   根据人眼的立体视觉的特性,实现立体电视的方式也对应为两大类:一类是利用两眼的视差特性,使一对视差信号的两幅图像同时出现在屏幕上,让两眼分别观看这两幅图像来获得立体感觉;第二类是利用一只眼睛也能获得立体感的特性,将一对视差信号的两幅图像先后轮流地出现在屏幕上,从而获得立体感觉。

   第一类立体电视利用了人的两眼的视差特性来实现立体电视,其方式主要有:色分法、光分法、时分法和全息电视法等。方式虽然各异,但其基本出发点相同,而且做法大体相似:在发送端用两台摄像机,模拟人的左、右两眼进行摄像,产生一对视差图像信号,编码成一路信号进行传送。接收端解码成两路信号,在屏幕上同时显示两幅图像,由人的两眼分别观看,从而获得立体感。

   这种方法又叫补色法,在接收机荧屏上用互补的两种颜色分别显示出供左、右两眼分看的图像,例如送到左眼的图像只有品红色,送到右眼的图像只有绿色,观看时要戴有色眼镜,使左眼只能看见品红色图像,右眼只能看见绿色图像,在大脑中融合成一个彩色立体图像,用这类色分法传送立体电视图像信号时,可以在一个电视频道内传送一套立体电视节目。

 将用于供左、右两眼观看的图像分别用偏振方向正交的两个偏振光投射到人眼,观看时戴上一副通透过偏振光的眼镜,使两眼分别看到各自所需的图像。显示器可用两个显像管组成,在每个荧光屏前加一块只能透过一个方向偏振光的极化板,两个荧光屏的夹角为90°,它们发出的偏振光通过与两个荧光屏都成45°角的半反射镜投射到观看者的眼镜上,或者在两组电视投影管前分别加一块极化板,用互相垂直的偏振光向同一个屏幕上投射出左右两眼的图像,这是戴眼镜观看方式中图像质量最好的一种方法,但观看时不能歪头。

   时分法以一定速度轮换地传送左右眼图像,显像端在一荧光屏上轮流显示左右两眼的图像,观看者需戴一副液晶眼镜,眼镜用一个与发送端同步的开关控制,当左眼图像出现时,左眼的液晶透光,右眼的液晶体不透光;相反,当右眼图像出现时,只有右眼的液晶透光,左右两眼只能看见各自所需的图像。

   全息法是一种采用全息摄像的三维立体电视技术,播放这种运用全息摄像技术制作的电视节目,一家人可以从各个角度看立体电视,甚至围成一个圈看电视,想象一下电视画面上的一个活灵活现的人物在屋子中间奔跑跳跃,那是多么令人激动的场面,这种技术尚处于研究阶段。

 1982年美国南卡罗来纳大学根据一只眼睛也能获得立体感的特性,提出一种新型的立体电视制式。在发送端也是利用两部摄像机获得一对视差图像信号,用一条信道以适当速率顺序地交替传送。在接收端使这一对视差信号所形成的两幅图像,按发送端传送的顺序,先后轮流地出现在屏幕上,人眼就能看到立体彩色图像。这种制式,在接收端不需要附加任何装置,用普通彩色电视机就可以看到立体彩色图像。为了实现这种立体电视,只需要在电视台进行必要的改造和添置若干装置,与千家万户的电视机无关,看来这是一种很有发展前途的新体制。 随着数字技术的应用,某些影视作品的特殊场景经过数字技术的录音合成(比如数字丽音),观众可得到一种身临其境的现场感,相比较而言,各类电视接收画面的清晰度虽说也有了大幅度的提高,但视频技术产品仍停留在二维画面,很少见到三维画面产品。立体电视技术是现代电视技术进入21世纪后“立体化”、“高清晰度化”、“数字化”3大发展方向之一,本文讨论立体电视技术及其进展情况。

立体电视又称为三维电视(3D TV),准确的术语应该是“Stereoscopies Television”,它与现行电视的主要区别是,现行电视只传送一个平面的信息,而立体电视传送的是物体的浓度信息,立体电视与立体电影的原理大体相同,它也是利用人眼的立体视觉特性来产生立体图像的。

人眼的立体视觉特性是立体电视与立体电影的共同基础。人类在观看周围世界时,不仅能看到物体的宽度和高度,而且能知道它们的深度,能判断物体之间或观看者与物体之间的距离。这种三维视觉特性产生的主要原因是:人们通常总是双目同时观看物体,而由于两只眼睛视轴的间距(约65 mm),左眼和右眼在看一定距离的物体时,所接收到的视觉图像是不同的,因而大脑通过眼球的运动、调整,综合了这两幅图像的信息,产生立体感。在单用左眼和右眼观看物体时,所产生的图像移位感觉就叫视差。理论分析可知,在没有任何工具的情况下,人眼可看到立体物体的最远距离不超过1 km。由经验得知,人的立体视觉还不是绝对靠视差,一只眼睛的人同样能判断物体深度和距离,他们主要是靠光线明暗、物体的相对尺寸、清晰程度、运动速度等来进行判断的,把眼球视线凝视于一点或一小区域后,利用眼睛上下左右转动来对物体上下、左右、前后扫描观察,以便使物体能在眼球运动、肌肉做功过程中,获得多幅稍有差别的物体图像信息,通过长期以来所积累的观察事物的经验进行判断等就足可获得立体感,由此可见,两只眼睛观察观看同一物体的视觉信号,可以获得立体感,而用一个眼睛对同一物体从两个稍有差别的观察点来获得图像信息,也能使人获得立体感。

立体摄像机具有两个镜头和两个摄像器件,用来代替人的两只眼睛摄取图像,两个镜头之间的距离及其光轴之间的夹角和距离必须模仿人的两个眼球动作,随着拍摄物体的距离变化不断进行调整,以使拍摄的两个图像的视差与人眼直接观看的视差相同。立体摄像机输出的左右两个图像信号需用2个通路传送到显像端,一般不能简单地用一个频道传送一套立体电视节目,必须采取频带压缩或码率压缩等方法才能用普通电视频道传送立体电视节目。立体电视的显像端必须分别显示左右两个图像,并确保左眼只能看见左眼图像,右眼只能看见右眼图像。

2 立体电视的实现方式

根据人眼的立体视觉的特性,实现立体电视的方式也对应为两大类:一类是利用两眼的视差特性,使一对视差信号的两幅图像同时出现在屏幕上,让两眼分别观看这两幅图像来获得立体感觉;第二类是利用一只眼睛也能获得立体感的特性,将一对视差信号的两幅图像先后轮流地出现在屏幕上,从而获得立体感觉。

2.1 第一类立体电视

第一类立体电视利用了人的两眼的视差特性来实现立体电视,其方式主要有:色分法、光分法、时分法和全息电视法等。方式虽然各异,但其基本出发点相同,而且做法大体相似:在发送端用两台摄像机,模拟人的左、右两眼进行摄像,产生一对视差图像信号,编码成一路信号进行传送。接收端解码成两路信号,在屏幕上同时显示两幅图像,由人的两眼分别观看,从而获得立体感。

这种方法又叫补色法,在接收机荧屏上用互补的两种颜色分别显示出供左、右两眼分看的图像,例如送到左眼的图像只有品红色,送到右眼的图像只有绿色,观看时要戴有色眼镜,使左眼只能看见品红色图像,右眼只能看见绿色图像,在大脑中融合成一个彩色立体图像,用这类色分法传送立体电视图像信号时,可以在一个电视频道内传送一套立体电视节目。

将用于供左、右两眼观看的图像分别用偏振方向正交的两个偏振光投射到人眼,观看时戴上一副通透过偏振光的眼镜,使两眼分别看到各自所需的图像。显示器可用两个显像管组成,在每个荧光屏前加一块只能透过一个方向偏振光的极化板,两个荧光屏的夹角为90°,它们发出的偏振光通过与两个荧光屏都成45°角的半反射镜投射到观看者的眼镜上,或者在两组电视投影管前分别加一块极化板,用互相垂直的偏振光向同一个屏幕上投射出左右两眼的图像,这是戴眼镜观看方式中图像质量最好的一种方法,但观看时不能歪头。

时分法以一定速度轮换地传送左右眼图像,显像端在一荧光屏上轮流显示左右两眼的图像,观看者需戴一副液晶眼镜,眼镜用一个与发送端同步的开关控制,当左眼图像出现时,左眼的液晶透光,右眼的液晶体不透光;相反,当右眼图像出现时,只有右眼的液晶透光,左右两眼只能看见各自所需的图像。

全息法是一种采用全息摄像的三维立体电视技术,播放这种运用全息摄像技术制作的电视节目,一家人可以从各个角度看立体电视,甚至围成一个圈看电视,想象一下电视画面上的一个活灵活现的人物在屋子中间奔跑跳跃,那是多么令人激动的场面,这种技术尚处于研究阶段。

2.2 第二类立体电视

1982年美国南卡罗来纳大学根据一只眼睛也能获得立体感的特性,提出一种新型的立体电视制式。在发送端也是利用两部摄像机获得一对视差图像信号,用一条信道以适当速率顺序地交替传送。在接收端使这一对视差信号所形成的两幅图像,按发送端传送的顺序,先后轮流地出现在屏幕上,人眼就能看到立体彩色图像。这种制式,在接收端不需要附加任何装置,用普通彩色电视机就可以看到立体彩色图像。为了实现这种立体电视,只需要在电视台进行必要的改造和添置若干装置,与千家万户的电视机无关,看来这是一种很有发展前途的新体制。

3 立体电视的发展现状

德国国际电子公司(TEL CASTINTERNATION)托马斯·侯亨赖先生发明了当今世界上最成功的全真立体电视技术,目前已在世界上50多个国家和地区得到了成功的推广和运用,并带来了巨大的商业利益。美国在第二类立体电视的研制方面走在了前面,我国对立体视频技术的研究也已有20年的历史,1999年在深圳高新技术交易会上,国内有4家单位进行视频立体显示技术的展示:天津三维技术公司、天津长城电视机厂、中国科技开发院威海分院、深圳万历投资公司。这些厂家产品的主要技术原理是把用两架摄像机在不同视角拍摄的图像,存成上下两幅显示,再佩戴左右切换的液晶眼镜观看立体效果。目前国内有十几家地方电视台播出使用这种技术的立体电视节目,北京电视台几年前也曾播出过,国内还有不少地方将这种技术用于影视厅。

北京紫金全真立体影像科技发展有限公司从德国引进了全真立体电视技术这项高科技成果,并获得中国独家专利拥有权。全真立体电视技术克服了传统双机或多机拍摄方式画面重影模糊的难题,可拍各种各样题材的节目,与各种制式的电视技术完全兼容,可以直接上播出线,观众用现有的电视机加“紫金全真立体眼镜”即可欣赏精彩的立体节目。用全真立体电视技术制作的节目具有很强的景深立体效果,画面中景物富有层次与空间感,画面透明、细腻,画质优良。

4 立体电视存在的问题

由于技术本身的局限,观众必须佩戴专用眼镜观看节目,限制了观众的自然感受。由于节目制作的成本较高,节目源很少,而对已有普通片源的转存加工又存在版权问题,再加上PAL制电视播出的场频是50 Hz,使用普通电视机观看,频闪造成画面抖动,使观众不舒服,目前这种立体电视在我国的发展仍然十分困难。

各种立体电视体制都有各自的优缺点,它们与人们理想的立体电视制式有着一定的距离。到目前为止,人们还没有找到或者确定某种最好的方式来实现立体电视。从目前视听行业的发展现状看,现阶段视频技术推进的重点还在提高清晰度上。目前全球数字电视节目的试播,画面也仍然是二维的,三维画面的真正实现应当还有相当长的路,到目前立体电视也还没有任何标准形成。从以往国内几家从事立体显示技术研究的公司看,一直存在着市场推广困难的问题,还没有产生任何市场效应,这些因素在客观上限制了立体电视技术的发展。

5 立体电视的发展方向

美国研究机构认为,就目前的立体显示技术,视频显示在40 Hz以下形成频闪,使节目不能观看,80~100 Hz将好一些,达到140 Hz将是最理想的,随着100 Hz电视机的出现,频闪问题将不复存在。国外出现了在一个掌心大小的线路卡上由3个模块、2个接转插口、5个控制钮和1个开关组成的转换卡,连接在一台普通计算机的主机与显示器之间,一个小小的发射管被固定在显示器顶上,用一张普通的VCD碟片播放出重影画面,戴上无线红外眼镜观看,立刻就成为一种具有强烈立体感的画面。这种立体显示系统能够实时将现有信号源的二维图像在显示器上转换成三维图像,它的最大特点就是对片源没有特殊要求,只要是通过光驱能够播放的,通过互联网下载的,通过电视卡接收的,都能在显示器上实时立体观看。

从长远看,立体电视是一个发展方向,立体电视的实现将是继数字电视后的又一场重大革命,它的完全实现将是从摄像到显像完全建立在数字技术、计算机技术和网络技术上的一个整体系统. 这里有比较详细的介绍

}

我要回帖

更多关于 投影仪连接电脑没有声音 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信