后级功放板前级和后级是什么意思后面板BR.STR分别代表什后级功放板前级和后级是什么意思的么意思?

<article>
<section>
/&gt;&lt;/h3&gt;&lt;h3&gt;普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RXVCO)也都集成在中频内部。&lt;/h3&gt;
/&gt;&lt;/h3&gt;&lt;h3&gt;由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;(2)、接收信号流程。(参照零中频手机)&lt;/h3&gt;&lt;h3&gt;手机接收时,天线把基站发送来电磁波转为微弱交流电流信号,经过天线开关接收通路,送高频滤波器滤除其它无用杂波,得到纯正935M-960M(GSM)的接收信号,由电容器耦合送入中频内部相应的高放管放大后,送入解调器与本振信号(不带信息)进行解调,得到67.707KHZ的接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;2)、发射压控振荡器(TX-VCO):&lt;/h3&gt;&lt;h3&gt;结构:发射压控振荡器是由电压控制输出频率的电容三点式振荡电路;在生产制造时集成为一小电路板上,引出五个脚:供电脚、接地脚、输出脚、控制脚、900M/1800M频段切换脚。当有合适工作电压后便振荡产生相应频率信号。&lt;/h3&gt;&lt;h3&gt;作用:把中频内调制器调制成的发射中频信号转为基站能接收的890M-915M(GSM)的频率信号。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;当发射时,电源部分送出3VTX电压使TX-VCO工作,产生890M-915M(GSM)的频率信号分两路走:a)、取样送回中频内部,与本振信号混频产生一个与发射中频相等的发射鉴频信号,送入鉴相器中与发射中频进行较;若TX-VCO振荡出频率不符合手机的工作信道,则鉴相器会产生1-4V跳变电压(带有交流发射信息的直流电压)去控制TX-VCO内部变容二极管的电容量,达到调整频率准确性目的。b)、送入功放经放大后由天线转为电磁波辐射出去。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;从上看出:由TX-VCO产生频率到取样送回中频内部,再产生电压去控制TX-VCO工作;刚好形成一个闭合环路,且是控制频率相位的,因此该电路也称发射锁相环电路。、&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;结构:两个线径和匝数相等的线圈相互靠近,利用互感原理组成。&lt;/h3&gt;&lt;h3&gt;作用:把功放发射功率电流取样送入功控。&lt;/h3&gt;&lt;h3&gt;原理:当发射时功放发射功率电流经过发射互感器时,在其次级感生与功率电流同样大小的电流,经检波(高频整流)后并送入功控。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;5)、功率等级信号:&lt;/h3&gt;&lt;h3&gt;所谓功率等级就是工程师们在手机编程时把接收信号分为八个等级,每个接收等级对应一级发射功率(如下表),手机在工作时,CPU根据接的信号强度来判断手机与基站距离远近,送出适当的发射等级信号,从而来决定功放的放大量(即接收强时,发射就弱)。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;原理:当发射时功率电流经过发射互感器时,在其次级感生的电流,经检波(高频整流)后并送入功控;同时编程时预设功率等级信号也送入功控;两个信号在内部比较后产生一个电压信号去控制功放的放大量,使功放工作电流适中,既省电又能长功放使用寿命(功控电压高,功放功率就大)。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;a)、一路取样送回中频内部,与本振信号混频产生一个与发射中频相等的发射鉴频信号,送入鉴相器中与发射中频进行较;若TX-VCO振荡出频率不符合手机的工作信道,则鉴相器会产生一个1-4V跳变电压去控制TX-VCO内部变容二极管的电容量,达到调整频率目的。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;b)、二路送入功放经放大后由天线转化为电磁波辐射出去。为了控制功放放大量,当发射时功率电流经过发射互感器时,在其次级感生的电流,经检波(高频整流)后并送入功控;同时编程时预设功率等级信号也送入功控;两个信号在内部比较后产生一个电压信号去控制功放的放大量,使功放工作电流适中,既省电又能长功放使用寿命。&lt;/h3&gt;&lt;h3&gt;&lt;br
&lt;h3&gt;b)、把频率合成集成块集成在中频内部,结合外接RX-VCO组成(中期机、诺基亚机多用;(如下图)&lt;/h3&gt; &lt;h3&gt;c)、把频率合成集成块、接收压控振荡器(RX-VCO)集成一体,称本振集成块或本振舐IC(中期机、三星机多用;如下图)。&lt;/h3&gt;
&lt;h3&gt;d)、把频率合成集成块、接收压控振荡器(RX-VCO)集成在中频内部(新型机、杂牌机多用;如下图)。&lt;/h3&gt; &lt;h3&gt;值得注意:无论采用何种结构模式,只是产生的频率不同;其工作原理,产生的频率信号的走向和作用都一样的。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;1)、把本振频率取样送入频率合成集成块内,与预设频率参考数据在内部进行比较;并以13M基准时钟为参考,产生1-4V跳变电压,去控制RX-VCO内部变容二极管的电容量,调整输出频率,使RX-VCO振荡出符合手机工作信道所需的本振频率(俗称微调)。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;2)、本振频率送入中频内部,经分频后又分三路:&lt;/h3&gt;&lt;h3&gt;a)、接收时本振频率送入接收解调器对接收信号进行解调(即本振频率与接收频率这两个大小相等,相位相反频率信号进行搬移和抵消;剩余对方送来的信息)。&lt;/h3&gt;&lt;h3&gt;b)、发射时本振频率送入发射调制器,对逻辑电路送来的发射基带信息(TXI-P;TXI-N;TXQ-P;TXQ-N),调制发射中频(即把发射信息叠加在本振频率上)。&lt;/h3&gt;&lt;h3&gt;C)、发射时,把TX-VCO产生频率取样送回中频内部,与本振频率混频,产生一个与发射中频频率相等的发射鉴频信号。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;从上看出:由RX-VCO产生频率到取送入频率合成集成块内部,再产生电压去控制RX-VCO工作;刚好形成一个闭合环路,且是控制频率相位的,因此该电路也称锁相环电路。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;从频合电路工作原理看,本振频率与接收频率要同步(同一工作信道)手机才有信号。CPU如何判定手机工作信道?原来当手机开机后,CPU送出900M/1800M两系统所有工作信道所需的SYN-DAT、SYN-CLK、SYN-RST、SIN-EN令RX-VCO产生所有本振频率,遂一送入中频内部与接收频率进行对接,直到逻辑电路接到基带信息为止。并锁定在该信道上,因此,手机找网是漫长过程。&lt;/h3&gt;&lt;h3&gt;&lt;br
processor)。以高通的产品线为例,射频收发机芯片的产品代号为WTR1605,基带调制解调器芯片为MDM9x25系列,应用处理器则是比较熟悉的骁龙系列。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;按照高通的产品划分来看,射频收发机芯片负责无线通信,应用处理器就是传统意义的CPU和GPU,基带调制解调器芯片负责对无线通信的收发信号进行数字信号处理,在整个系统中的位置介于前两者之间。&lt;/h3&gt;&lt;h3&gt;&lt;br
tracking)技术,这个需要根据要发射的数据实时调整PA的供电电压,一般来说通过基带和射频的协同可以获得更好的效果。&lt;/h3&gt;&lt;h3&gt;&lt;br
Band)皆来自英文直译。其中射频最早的应用就是Radio无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做&amp;quot;未调制信号&amp;quot;,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。&lt;/h3&gt;&lt;h3&gt;&lt;br
/&gt;&lt;/h3&gt;&lt;h3&gt;简言之,DSP芯片和射频芯片、基带芯片无关。DSP芯片是一个有强大数字处理能力的专用处理器,用于语音信号处理、信道编解码、图像处理等方面,基带芯片或射频芯片内部可内置一至多个DSP,但它是用于大量数据计算的,因而DSP可在芯片内部做成硬核(hardcore),但这样做灵活性欠佳。&lt;/h3&gt;
</section>
</article>}

我要回帖

更多关于 后级功放后面板 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信