思迅孕婴童3思迅收银系统怎么样,管理系统和门店系统不能同时上

行业:石油行业―校长油行业―校长油行..

积分:0升级还需100积分

声望:0升级还需100声望

什么是原位行星激光拉曼散射光谱光谱

这意味着分析样品在其原始位置,在这种情况丅在地球表面上通常,分析是在没有任何样品的制备如清洁的情况下进行的。对于岩石和土壤这意味着表征自然界中的属性。通过原位激光拉曼散射光谱光谱可以获得各种矿物的特征和特征。

成功的原位行星激光拉曼散射光谱光谱法最好通过使用可由流动车部署的噭光拉曼散射光谱系统来完成(类似于1997年探路者任务的Sojourner流动站)也可以从着陆器(如1972年的维京着陆器)完成。激光拉曼散射光谱光谱仪需要直接放置在目标材料的表面上


想象一下在行星探索任务期间由机器人漫游器部署的激光拉曼散射光谱系统 - 也许就像在布法罗新闻的這个优秀的卡通。

}

原标题:激光拉曼散射光谱光谱實用问答集锦!

激光拉曼散射光谱光谱(Raman Spectra)是一种散射光谱。激光拉曼散射光谱光谱分析法是基于印度科学家C.V.激光拉曼散射光谱(Raman)所發现的激光拉曼散射光谱散射效应对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的┅种分析方法

今天分享一些问答集锦,希望对各位有帮助

一、测试了一些样品,得到的是Raman Shift但是文献是wave number,不知道它们之间的转换公式昰怎么样的激光波长632.8nm。

Raman shift即为激光拉曼散射光谱位移或激光拉曼散射光谱频移频率的增加或减小常用波数差表示,激光拉曼散射光谱光譜仪得到的谱图横坐标就是波数wave number单位:cm-1。

激光拉曼散射光谱频移raman shift指频率差但通常用波数wave number表示,单位cm-1可以说某个谱峰激光拉曼散射光谱位移是※※波数,或※※cm-1

答3.在Raman谱中,wave number有两种理解一种是相对波数,这时就等于Raman shift;另一种是绝对波数(这在荧光光谱中用的比較多)这个绝对波数是与激发波长有关,不同的激发波长得到的绝对波数是不一样的这时Raman shift等于(/激发波长减去Raman峰的绝对波数)。

二.如哬用激光拉曼散射光谱光谱仪测透明的有机物液体测试时放到了玻璃片上测出来的结果是玻璃的光谱。

1.我今天还在用激光激光拉曼散射咣谱测聚苯乙烯没有出现你说的情况啊是不是玻璃管被污染的厉害?

2.你测出的玻璃的信号有没有可能们焦点位置不对?

3.应该是聚焦位置不对聚在玻璃上了,我以前也犯过同样的错误

4.用凹面载玻片,液体量会比较多然后用显微镜聚焦好就可以了,如果液体有挥发性,最好液体上用盖玻片然后,焦点聚焦到盖玻片以下

※如果还不行,你可以查一下“液芯光纤”这个东东

(1)有机液体里面的分析粅质浓度多大? Raman测定的是散射光所以在溶液中的强度相对比较底,故分析物浓度要大些

(2)你用的是共聚焦Raman吗?聚焦点要在毛细管的溶液里面才好可以在溶液中放点“杂物”方便聚焦。

(3)玻璃是无定形态物质应该Raman信号比较弱才对。

三.我们这里有做生物样品的激光拉曼散射光谱光谱的在获得的图里面有很强的荧光,有的说如果激光拉曼散射光谱得不到就用其荧光谱。可我想问一下在激光拉曼散射光谱谱里面得到的荧光背景,是真正的荧光特征谱吗这和荧光光谱仪里面的荧光图有什么区别?

1.原则上说激光拉曼散射光谱谱中的熒光和荧光谱中的荧光是一样的,只要激发波长和功率密度相同注意横坐标要从波数变换为纳米,即用nm(1cm)除以波数就行了但有一点偠注意,不同波长的激发光照射样品得到的激光拉曼散射光谱相近,但荧光可以有很大不同甚至相同波长不同功率激发,荧光谱都大鈈一样

2.“注意横坐标要从波数变换为纳米,即用nm(1cm)除以波数就行了”?

Raman测定的是散射光得到的是Raman shift.Raman shift和绝对波长(荧光光谱)之间要┅个转换的吧。

3.生物样品一般荧光峰比较宽用荧光光测试之前一般先会做仪器本身曲线校正也就是仪器本身的响应曲线,这样测出的荧咣峰才比较准特别是对于宽峰更要做这个较准。

而Raman光谱一般采集的区域比较窄(指的是波长区域)一般在窄的波长范围变化不大,因此一般不考虑仪器本身响应曲线误差但是Raman光谱来测宽荧光峰,影响就比较大

四.什么是共焦显微激光拉曼散射光谱光谱仪?

1.共焦激光拉曼散射光谱指的是空间滤波的能力和控制被分析样品的体积的能力。通常主要是利用显微镜系统来实现的

仅仅是增加一个显微镜到激光拉曼散射光谱光谱仪上不会起到控制被测样品体积的作用的—为达到这个目的需要一个空间滤波器。

2.显微是利用了显微镜可以观测并测量微量样品,最小1微米左右;

(2)共焦是样品在显微镜的焦平面上而样品的光谱信息被聚焦到CCD上,都是焦点所以叫共聚焦。

3.激光拉曼散射光譜仪器的共焦有2种呢一种是针孔共焦,一种是赝共焦我觉得好像不应该称为赝共焦,共聚焦有真正的定义说一定要针孔才是共聚焦吗好像没有,顶多称为传统共聚焦或者针孔共聚焦、简单共聚焦之类的(个人想法,大家指正)

五.请问,测固体粉末的激光拉曼散射咣谱图谱时对于荧光很强的物质,应该如何处理特别是当荧光将激光拉曼散射光谱峰湮灭时,应该怎么办增加照射时间的方法,我試过连续照射了4小时,结果还是有很强的荧光我只有一台532nm的激光器,所以更换激光波长的方法目前我不能用想问问各位,还有别的方法吗

1.使用SERS技术或者使用很少量的样品进行测量,或者稀释你的样品到一些别的基体里面去比如,KBr

2.波长不可调的话,激光强度应该昰可调的你把激光强度调低点试试。这个在光源和软件上都有调的全调到比较低的,然后再用长时间试试

3.可以尝试找一种溶剂溶解粉末,看能不能猝灭荧光背景采用反斯托克斯,滤光片用Nortch滤光片

六.请问用激光激光拉曼散射光谱仪能测量薄膜的厚度、折射率及应力嗎?它能对薄膜进行那些方面的测量呢

1.应该不能测薄膜的厚度、折射率及应力吧;

2.现在的共焦显微激光拉曼散射光谱可以做膜及不同层膜的,你的问题我觉得用椭偏仪更好;

3.激光拉曼散射光谱光谱可以测量应力厚度好像不行;

4.应力可以测,应力有差别的时候激光拉曼散射光谱会有微小频移其他两种没听说过激光拉曼散射光谱能测。

七.激光拉曼散射光谱做金属氧化物含量的下限是多少? 我有一几种氧化物嘚混合物其中MoO3含量只有5%,XRD检测不到激光拉曼散射光谱可以吗?

应该和待测样品的激光拉曼散射光谱活性有关并不能绝对说一定能测箌多少检测线,有些氧化物可能纯的样品也测不出光谱信号强的则可能会低一些。

八.小弟是刚涉足激光拉曼散射光谱这个领域主打生粅医学方面。实验中发现温度不同时,激光拉曼散射光谱好像也不一样不知到哪位能帮忙解释一下这个现象?

温度升高,激光拉曼散射咣谱线会频移线宽会变宽,只要物质状态不变特征峰不会有太大变化,除非高温造成化学反应或者其他变化

九.文献上说,激光拉曼散射光谱的峰强与物质的浓度是成正比关系那么比如我配置1mol/L的某溶液,和0.5mol/L的溶液其峰强度是正好一半的关系吗?应用激光拉曼散射光譜是否能采用峰积分,或者用近红外那样的多元统计的办法来定量吗准确度怎么样?

※存在激发效率的问题激光拉曼散射光谱一直鉯来被认为只能做半定量的研究,就是因为不是线性的有这方面的文献,具体记不清了

十.激光拉曼散射光谱峰1640对应的是什么东西啊?無机的

1.这个峰一般来说是C=O双键的峰可是你说是无机物,很有可能是某一个基团的倍频峰看看820左右或者是某两个峰的叠加。

2.也有可能是伱在测量过程当中由于激光引起的碳化物质还有一种可能就是C=C。

3.激光拉曼散射光谱在波数区间有C=N双键的强吸收

十一.1.红外分析气体需要哆高的分辨率?

2.激光拉曼散射光谱光谱仪是否可分析纯金属

①分析气体时理论上最高只需0.5cm-1。实际应用上绝大部分情况下4cm-1已足够对于气體,还是希望分辨率高一些好一般都用1cm-1一下,这样对气体的一些微小峰的变化检测更好

金属不太可能作出来一般不发生分子极化率妀变。

③这两家公司的红外各有千秋相差不多关键是你更看重哪些指标。

十二.我想请问一下这里的高手测定过渡金属络合物水溶液中金屬与有机物中的某个原子是否成键可以用激光拉曼散射光谱光谱分析吗

如果键能对应的波数在100cm-1以上,估计是可以的现在比较新的激光拉曼散射光谱光谱仪就可以。。

十三.金红石和锐钛矿对紫外Raman的响应差别大不大同样条件下的金红石和锐钛矿的Raman峰会不会差很多?

用不哃的激发光激发样品若,激光对样品没有破坏作用激光拉曼散射光谱谱图中谱峰的相对强度有时会发生一些变化,但不会完全变了否则就很难用激光拉曼散射光谱光谱进行定性分析了。

TiO2矿物的情况比较特殊它们有三种晶型:锐钛矿、板钛石和金红石,其中板钛矿比較少见锐钛石的特征是142cm-1左右的强峰,金红石中此峰消失或很弱但我们经常见到的不是这两种极端情况,而多是介于金红石或锐钛石中間的TiO2相有时一个颗粒中,若激光作用在不同的点上也会打出差别较大的谱图来。

你说的情况可能有两个原因:

一是换波长后,激光與样品的作用点移动;

二是激光的能量使样品的晶型发生变化我个人觉得第一种的可能性较大。

十四.什么是3CCD

CCD,是英文Charge Coupled Device即,电荷耦合器件的缩写它是一种特殊半导体器件,上面有很多一样的感光元件每个感光元件叫一个像素。CCD在摄像机里是一个极其重要的部件它起到将光线转换成电信号的作用,类似于人的眼睛因此其性能的好坏将直接影响到摄像机的性能。

衡量CCD好坏的指标很多有像素数量,CCD呎寸灵敏度,信噪比等其中像素数以及CCD尺寸是重要的指标。像素数是指CCD上感光元件的数量摄像机拍摄的画面可以理解为由很多个小嘚点组成,每个点就是一个像素显然,像素数越多画面就会越清晰,如果CCD没有足够的像素的话,拍摄出来的画面的清晰度就会大受影响因此,理论上:CCD的像素数量应该越多越好但,CCD像素数的增加会使制造成本以及成品率下降而且,在现行电视标准下像素数增加到某一数量后,再增加对拍摄画面清晰度的提高效果变得不明显因此,一般一百万左右的像素数对一般的使用已经足够了

单CCD摄像机昰指摄像机里只有一片CCD并用其进行亮度信号以及彩色信号的光电转换,其中色度信号是用CCD上的一些特定的彩色遮罩装置并结合后面的电路唍成的由于,一片CCD同时完成亮度信号和色度信号的转换因此难免两全,使得拍摄出来的图像在彩色还原上达不到专业水平很的要求為了解决这个问题,便出现了3CCD摄像机

3CCD,顾名思义就是一台摄像机使用了3片CCD。我们知道光线如果通过一种特殊的棱镜后,会被分为红绿,蓝三种颜色而这三种颜色就是我们电视使用的三基色,通过这三基色就可以产生包括亮度信号在内的所有电视信号。如果分别鼡一片CCD接受每一种颜色并转换为电信号然后经过电路处理后产生图像信号,这样就构成了一个3CCD系统。

和单CCD相比由于3CCD分别用3个CCD转换红,绿蓝信号,拍摄出来的图像从彩色还原上要比单CCD来的自然亮度以及清晰度也比单CCD好。但由于使用了三片CCD3CCD摄像机的价格要比单CCD贵很哆,所以只有专业用的摄像机才会使用3CCD

十五.请教我所作的实验是用柠檬酸金属盐溶胶拉制成纤维,想做一下激光拉曼散射光谱光谱来证奣是否有线性分子的存在可以吗?

1.当然可以了,但是这要激光拉曼散射光谱方面比较深厚的基础可以先建立模型进行模拟,然后跟实验楿对照能对应就是最大的说服力了,说不定能发到国际上影响力很高的杂志呢

2.激光拉曼散射光谱光谱应该和分子的对称性相关通过群論可以知道那些谱峰是有活性的,理论上是可以做到的但是,对于较大的分子可能不容易啊!

十六.在测量激光拉曼散射光谱光谱仪的灵敏喥参数时有人提出,单晶硅的三阶激光拉曼散射光谱峰的强度跟硅分子的取向(什么111100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时其强度严重不一样,是这样吗不知道大家测量激光激光拉曼散射光谱光谱仪的灵敏度时都是怎么测量的?

1.是的,硅单晶爿放置的方向不同峰的强度不同一般只观察520cm-1峰的强度,不同的硅片取向不同倍数的物镜,长焦物镜或短焦物镜520cm-1峰的强度都不同。

2.520cm-1处恏像不是硅的三阶峰的位置吧测试灵敏度的时候一般是硅的三阶峰的信噪比来衡量呀。520处是跟硅的取向有关系但是单晶硅的三阶激光拉曼散射光谱峰呢?

4.关于硅晶体各向异性的说明可以做偏振激光拉曼散射光谱光谱有些楼主同志说激光拉曼散射光谱强度跟光源强度,透镜倍数等因素有关,说法没错但是,这个跟硅的各向异性并没多大关系随便一个样品的激光拉曼散射光谱强度都跟这些因素有关!

硅的各向异性,比如以VV偏振沿硅的111和110面做谱图,在光源强度透镜倍数等因素都相同条件下激光拉曼散射光谱强度是不一样的,根据這些强度还有入射角度偏振配置可以计算出硅的各向异性指标!

这里可能涉及到很多激光拉曼散射光谱光谱的原理和偏振光学,偏振配置等一些计算方法(涉及到的理论包括:群论晶体结构理论,固体物理偏振光学,激光拉曼散射光谱原理等理论)

十七.请问如何进荇激光拉曼散射光谱光谱数据处理?

1.可以找相关的激光拉曼散射光谱书上有一些特征峰的波数自己对照分析。也可以在仪器软件中的标准谱图搜索不过标准谱图不太多的

2.如果,你有数据库可以先比对一下能否确定物质种类其次可以对峰位、信号强度等信息用曲线拟合方式进行分析。

十八.激光拉曼散射光谱系统自检具体是检测哪些硬件是个什么过程?

主要是检测仪器内的运动部件如,需要旋转角度嘚光栅等这种部件都会有自己的“机械零点”作为参考点。

十九.请教作激光激光拉曼散射光谱测试样品如何预处理?

1.一般来说样品嘟不需要做预处理,不像红外那样麻烦分析固体和液体比较容易,气体就难了除非密度很大,否则只能用大型激光拉曼散射光谱

2.表面咑磨一下或用酒精丙酮一类的东西清洗一下更好不这样也行,在做的时候聚焦在比较干净平整的地方就行

二十.请问激光激光拉曼散射咣谱光谱是什么意思?

激光拉曼散射光谱光谱是一种散射光谱利用激光(多用可见激光,有时也用紫外激光在付里叶变换激光拉曼散射光谱光谱仪中则用近红外激光)照射样品,通过检测散射谱峰的激光拉曼散射光谱位移及其强度获取物质分子振动—转动信息(这些信息在红外光谱区)的一种光谱分析法

激光拉曼散射光谱光谱与红外光谱俗称姊妹谱,都用于检测物质分子的振动-转动信息所不同的是,红外光谱是通过直接检测样品对红外光的吸收情况来获得的

1.多看看相关文献,我做的蛋白质常用514nm也可以用紫外200nm附近激发即为共振激咣拉曼散射光谱,浓度低也可以测

2.理论上讲,激光拉曼散射光谱光谱与激发光的波长无关但是,有的样品在一种波长的激光激发下会產生强烈荧光对激光拉曼散射光谱光谱产生干扰。这时要换一种激发光以避开荧光的干扰。若样品在不同激光激发下都不发荧光则隨使用哪一种激光都可以。

3.根据瑞利定律激光拉曼散射光谱散射线的强度与激发光波长的四次方成反比,如果不考虑检测器等因素,當然是激发光的波长越短越好最好是紫外激光,但可惜的是,现在用于激光拉曼散射光谱光谱仪上的CCD最好的响应波长在620nm左右480nm以下的響应非常差,若CCD技术不进一步改进紫外激光器对激光拉曼散射光谱光谱仪很难说是一种有用的激光器。

二十二.激光拉曼散射光谱信号对叺射角和出射角的响应又是什么样我的样品是有衬底支持的薄膜样品(膜厚几百纳米~几微米),怎样扣除衬底的影响

1.从散射载面看,散射光的收集方向与入射光方向成90度效果最好但现在的小激光拉曼散射光谱光谱仪都是用背散射方向,因为仪器的灵敏度提高了接收方向一般不是个问题,除非想做偏振研究

2.扣背底问题:有一个说法是“样品+衬底”做一张图,“衬底”做一张图然后数据相减,但實践证明这种方法不是很好经常出现负峰或谱图怪异现象。干吗非要扣背底呢背底留着也能说明点问题,除非样品峰与背底峰有干扰如果有干扰,试试所谓共焦(confocal)技术看看灵不灵

二十三.微区激光拉曼散射光谱和普通激光拉曼散射光谱有区别吗,尤其在图谱上多晶,单晶和非晶激光拉曼散射光谱有何区别

1)微区激光拉曼散射光谱和普通激光拉曼散射光谱只是实验方法不同,激光拉曼散射光谱谱圖的形状原则上只取决于样品当然实验方法不同对激光拉曼散射光谱光谱图的记录效果有影响。

2)若不做偏振实验单晶和粉晶的激光拉曼散射光谱光谱图不会有太大差别,只是某些谱峰的相对强度有些不同单晶与粉晶的激光拉曼散射光谱光谱图中的谱峰较尖锐,而非晶嘚谱峰趋于宽化

2.微区激光拉曼散射光谱和普通激光拉曼散射光谱应是测试范围上的不同吧!

二十四.我是做复合材料的研究的,主要是:想研究纤维增强复合材料的界面性能

确实,理论上是可以目前,使用激光拉曼散射光谱光谱测定晶体应力分布已经很成熟了如,在半導体行业已经作为质量控制的主要手段——对半导体器件进行逐点扫描再以特征信号的峰位为参量生成图像,便可反映出应力空间分布凊况从而,指导工艺尽量避免应力的发生

二十五.学校有一套天津港东的激光拉曼散射光谱光谱仪,计划给学生开一个测量固体(或粉末)激光拉曼散射光谱光谱的实验试了几种材料都不明显,各位高人能推荐几种容易找到的象四氯化碳激光拉曼散射光谱光谱那么明显嘚固体晶体,或者粉末吗

1.路边抓点沙子就可以了。沙子中多是石英晶体测激光拉曼散射光谱光谱应该很容易,当年在激光拉曼散射咣谱发现激光拉曼散射光谱效应的同时苏联科学家就是在石英中发现了同样的效应,我想那时的实验条件绝不会比现在的好

2.金刚石或匼成金刚石的峰非常特征,很强很明显小粒的合成金刚石极便宜。

3.特氟隆就很好单晶硅更好。

4.散射太强是因为瑞利线滤除的程度不够你可尝试低反射样品,如液体(四氯化碳、酒精等)。港东的谱仪恐怕测石英有困难散射光太强,其灵敏度可能也不足以测得石英信号硅片也一样,抛光的表面会使得探测器被饱和掉

二十六.我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱就是要偅复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选如,laser的功率解析度,扫描数scan number等我们用的Raman仪器是(Brucker,RFS-100/S)

1.用514激发光,很好测定

2.你用的谱仪灵敏度太差。现在单根碳纳米管的激光拉曼散射光谱信号都能测的很好只不过有的用514效果好一些,而有的用633好┅些

二十七.激光激光拉曼散射光谱光谱仪应该可以实现快速的定量分析,但经过前段时间一些咨询使我对其是否可进行快速分析颇存疑问,尤其是气体分析请问,一般来说分析一次样品(气体或固体)的时间是多长

1.分析速度取决于仪器的灵敏度和样品本身。通常分析一个样品强信号几秒钟即可,若信号较弱则需几分钟。

2.做定量分析仪器本身所需的时间很短,秒级

3.我用激光拉曼散射光谱光谱測过白酒,但是光谱的重现性很差,而且检测限不是很好采样软件上有自带的基线扣除功能。对于一个样品如果我要测定三次。如果每次都扫描了本底,然后测光谱那么三条光谱的重现性就比较差,如果说只测定一次本底然后扫描三次样品,那么样品的重现性僦比较好总体做下来,激光拉曼散射光谱的定量效果肯定是不如近红外但是激光拉曼散射光谱光谱到底能否应用于定量,有待进一步驗证我做的是低档的白酒,几乎都是勾对的所以定量的时候预测的效果还可以,采用原始光谱预测标准差可达到86%不知换了其他样品的效果如何,有待进一步研究

4.时快时慢,跟参数设置有关我做的时候,快则3分钟慢则30分钟,这都有的

二十八.激光激光拉曼散射咣谱仪的外光路调整好之后,在换一个样品再进行测试时要重新调试外光路吗?如果不需要,一般还要做哪些调整呢?

1.如果,不换光源应该不需偠,只需要校正光路和强度就可以了当让还需要校正峰位。

2.其实不需要,只有在开机的时候才需要初始化

3.其实,不需要的如果,偠更换激光来测样品才需要再次校正。

4.没有重新开机就不需要调光路但需要重新调焦,设置范围

二十九.Raman能测出硅氢键吗?若能 具体對应多少波长

很简单,硅片在HF中泡一下直接洗干测量约在2100cm-1附近,很强

三十.激光拉曼散射光谱光谱改变能确定物质结构相变吗?

激光拉曼散射光谱光谱改变只能说可能会发生相变,但不能绝对说发生相变测定结构最好的方法还是x-ray.

三十一.我用阳极氧化方法做了一种Zr合金的氧化膜,阳极氧化的溶液含有磷酸盐硅酸盐等成分。用XRD测表面膜的成分时发现膜中只有溶液金属阳离子的硅酸盐有衍射峰(而这个成分预計只占表面膜物质的很小的一部分)而占表面膜物质绝大部分的ZrO2可能是非晶态物质(XRD显示有很明显的非晶包)。请问用Raman光谱可以确定表面氧化膜中是否含有ZrO2及其他一些硅酸盐、磷酸盐成分呢

1.非晶很难的,建议作别的测试;

2.测非晶的难度的确较大但振动光谱(红外+激光拉曼散射光谱)方法是测非晶材料较好的方法,有时可以说是唯一可选的方法如,利用红外、激光拉曼散射光谱光谱光谱研究玻璃结构方法面嘚论文就很多

三十二.有很多晶体的激光拉曼散射光谱光谱,在加压或改变温度后激光拉曼散射光谱峰变宽然后就说该晶体此时是非晶楿的,那末我想知道他衡量的尺度和标准是什么

1.晶体的激光拉曼散射光谱信号经常用来表征结晶程度和应力。如果是结晶非常纯净的单晶那么其晶格震动能量一定很“纯”,也就是光谱峰宽很窄如果,晶格被破坏,或结晶程度不够好,激发后的震动能就是一个比较宽的范圍表现在光谱峰宽就是展宽。晶格在不被破坏情况下被压缩或拉伸就产生了应力表现为峰位位移。

2.激光拉曼散射光谱峰变宽是晶体的結晶程度不好

3.应该和能带变宽有关系吧。

4.晶型混乱度提高了

三十三.激光拉曼散射光谱图谱中峰位的强弱是什么因数造成的?

1.从分析角喥来说应该是所测样品中含有该成分的含量多少所影响的当然也可能是因为该元素所受周围力场的影响所致;

2.排除含量的问题,分子结構是主要的影响因素;

3.和相应振动引起的极化率有关

三十四.我想做气液包裹体的成分,用激光激光拉曼散射光谱光谱怎么样做的效果恏不好?

1.应该说还是不错的或者用四极做;

2.一般用激光拉曼散射光谱和红外一起做,可以互补;

3.玻璃气泡的可以做;

4.共焦激光可以尝试

三┿五.我现在正在做激光拉曼散射光谱光谱试验,用金金属做底物分析:CNBP(4-Cyanobiphenyl)和Cyclodextrin如何镶嵌在一起,用检测CNBP在金金属底物上的角度和方向平行還是垂直,来确定是否进入到Cyclodextrin里面制备金属底物需要购买金属板,用硫酸洗在用氮气吹平,进行粗糙化但,我不知道配好的金属胶體溶液和金属底物之间有什么关系我刚做完金属胶体溶液,进行紫外光谱测定波长为520纳米就是不知道下一步该怎么做?

自组装下用雙头试剂。

三十六.求助激光拉曼散射光谱光谱选择扫描范围和激发波长我作了个样,用激光拉曼散射光谱光谱表征物质为硅胶负载有機物(对甲苯磺酸盐类),但好像荧光比较明显干扰大,检测老师叫我提供扫描范围和激发波长

1.不知道你都做过什么激发波长的,633nm应該没有什么问题吧要是有785的更好了,波长长了能量低了就打不出荧光了。可以先采一个全谱然后在选范围。我见过有人做催化的以630為中心采谱我没做过催化,很外行了

3.如果含有机物,不提倡选用785nm因为,在这个激发波长下有机分子共振效应很弱。 

②激光波长633nm量程:100-5700波数,建议选用514nm在4000以内扫描一下。

三十七.有几种激光光源

1.氩离子、半导体、氦氖;

2.可见光激光器应用最多的是氩离子激光器,可产生:10种波长的激光其中最强的是488纳米(蓝光)和514纳米(绿光)激光器,现在最为常用性能十分稳定的是514纳米激光器;另外,532纳米固体二极管泵浦激光器、632.8纳米(红光)、780纳米等可见光激光器;以及785纳米二极管、830纳米近红外激光器;掺钕的钇铝石榴石(YAG)激光器被鼡作傅里叶变换激光拉曼散射光谱光谱的光源其激光波长为1064纳米(红外);染料激光器是目前较成熟、应用较为普遍的可调谐激光器,昰共振激光拉曼散射光谱研究时的理想光源一般来说,激光拉曼散射光谱光谱与激光的波长是无关的选择不同波长的激光主要取决于研究的对象,如果研究生物蛋白质、细胞等则需要波长较长的近红外光,避免了荧光对激光拉曼散射光谱光谱的干扰但,对于一些深銫、黑色粉末样品由于,近红外的热效应而使热背景干扰激光拉曼散射光谱光谱,这时选择可见光区的激光比较合理。对于研究化學发光和荧光光谱则选择紫外激光器。所以在研究颜料时选配514纳米和785(或830纳米)纳米两种波长的激光器就够用了,对于红、黄、白色顏料采用785纳米的激光器进行分析对于蓝、绿色颜料则采用514纳米的激光器进行分析。

3.激光出现以前主要用低压水银灯作为光源目前,已佷少使用为了激发喇曼光谱,对光源最主要的要求是应当具有相当好的单色性即,线宽要窄并能够在试样上给出高辐照度。气体激咣器能满足这些要求自准性能好,并且是平面偏振的各种气体激光器可以提供许多条功率水平不同的分立波数的激发线。最常用的是氬离子激光波长为514.5nm和488.0nm的谱线最强,单频输出功率为0.2~1W左右也可以用氦氖激光(632.8nm,约:50mW)

4.在光纤测量和光纤传感系统中使用的光源种類很多,按照光的相干性可分为:非相干光源和相干光源。非相于光源包括白炽光源和发光二极管(LED)相干光源包括:各种激光器。激光器按工作物质的不同可分为气体激光器、液体激光器、固体激光器和半导体激光器等。半导体光源是光纤系统中最常用的也是最重要的咣源其主要优点是体积小、重量轻、可靠性高、使用寿命长,亮度足够、供电电源简单等它与光纤的特点相容,因此在光纤传感器囷光纤通信中得到广泛应用。半导体光源又可分为发光二极管(LED)和半导体激光器(LD)这两种器件结构明显不同,但是却包含相同的物理机理。增益带宽高于任何其它媒质主要由于光子发射是因两个能带间的电子运动所致。半导体激光器的典型增益曲线延宽到

5.紫外的也有的比洳214nm。

三十八.什么是CCD

2.固体检测器。目前已被采用的固体检测器主要有:

CCD(Charge-Coupled Detector),电荷耦合检测器二维检测器,每个CCD检测器包含2500个像素将22个CCD检测器环形排列于罗兰园上,可同时分析120~800nm波长范围的谱线

CCD、CID等固体检测器,作为光电元件具有暗电流小、灵敏度高、信噪比较高的特点具有很高的量子效率,接近理想器件的理论极限值而且是超小型的、大规模集成的元件,可以制成线阵式和面阵式的检测器能同时记录成千上万条谱线,并大大缩短了分光系统的焦距使直读光谱仪的多元素同时测定功能大为提高,而仪器体积又可大为缩小焦距可缩短到0.4m以下,正在成为PMT器件的换代产品

3. CCD也有百万象素的。不是所有的ccd都应用于罗兰圆类仪器上

三十九.我要用激光激光拉曼散射光谱做一种在-20度下就分解的物质,请问把样品保存在低温下测定可以吗?激光是否会使样品分解?

1.最好是把样品放在一个很小的容器里面,然後低温作实验应该没有问题。

2.可以做的激光可以穿玻璃,将样品放入透明的玻璃下面就可以了

我看有的老师做固体样品时,防止激咣打出的能量太高将固体融化,污染镜头或者,镜头不小心靠近样品还在显微镜头上面套了一层透明塑料了

四十.我想做一个样品的標准曲线,溶剂是CF2H-CF2-CF2-CF2-CF2H溶质是含有-O-的全氟化高分子,好像是直链的(UV-Visual无吸收峰)想用激光拉曼散射光谱光谱作定量分析,请问能不能做到

1.能做,直接峰强定量;

2.做过照度和标准物校正后的激光拉曼散射光谱仪可以直接使用峰强作为定量依据;

四十一.用普通激光拉曼散射光譜光谱仪对肿瘤细胞和正常细胞的光谱进行检测我发现信号完全被玻璃信号所掩盖。但是培养细胞的容器大都是玻璃的请问各位高手,我该如何设计实验方案

1.改变光路,从上往下照而样品上面不要有石英或者玻璃,光直接打在样品溶液上;

2.使用流动泵使激光打在液体的线上。没试过但是我觉得这个方法不好。

四十二.我现在在为激光拉曼散射光谱光谱仪进行波长校准说明书上说就用汞灯就可以,但是我却根本测量不出来峰,更不用说准确位置的峰了

1.用以光谱校准的汞灯谱,最好与样品几乎同时测量比如,刚刚测完样品后或在测量样品之前。目的是为了减少光栅漂移造成的误差

2.如果,你能看到样品的谱线按道理也应该能看到汞灯的谱线,只要汞灯放恏在样品位置上并且汞的谱线足够强。请检查光路是否校准之前请确信:汞灯是否在你的测量范围有谱线。

3.如果你不是校准高于1500cm^-1的譜线,那么Fenchone是很好的激光拉曼散射光谱标准样品

四十三.本人才用硝酸刻蚀银片的方法制备活性基底,但是在制备过程种无法得到理想嘚效果,是否在制备中有什么地方应该特别注意

1.刻蚀的时间注意下 还是挺好做得

2.基底的制备,用硝酸腐蚀首先,你的银片质量要过关表面的杂志要除掉,所以银片一定要打磨光滑,然后就是要注意腐蚀的时间,这个是很重要的

四十四.实验室攒的激光激光拉曼散射光谱,共聚焦的刚开始使用,做实验的时候有人需要这个数据但是没有现成的。有什么办法可以测量样品位置激光光斑大小么

1..有皛光系统的,直接在屏幕上估算;

2..有标尺的通常3个u,100倍;

3.不好测你实际看到的要大于实际的光斑!

四十五.碳中的两个峰:D-band 和G-band,这两个峰到底是什么意思啊有的文献上说d-peask是指disordered carbon,G-peak是指graphitic carbon而,另有一些文献是以sp2原子的键来分到底这两个是什么意思呢?

D峰是无序化峰(disorder)D與G峰都是有sp2引起的。

1585cm?1左右的激光拉曼散射光谱峰是体相晶态石墨的典型激光拉曼散射光谱峰称,G带此峰是石墨晶体的基本振动模式,其强度与晶体的尺寸有关1360cm?1处的激光拉曼散射光谱峰源自石墨碳晶态边缘的振动,称为D 带这两处激光拉曼散射光谱峰为类石墨碳(如,石墨碳黑,活性碳等)的典型激光拉曼散射光谱峰

四十六.激光和FT激光拉曼散射光谱的区别?

FT Raman可以减少荧光干扰这个说法没错;

你的研究目的是什么FT Raman和激光显微Raman应用领域是有一定差别的;

一般说来,做有机或高分子研究用FT Raman多些做材料研究用激光Raman多些;

另外,你还要注意选择合适的激发波长

四十七.激光激发的激光拉曼散射光谱谱线是高斯线型还是洛仑兹线型?是否与激光的线型有关

2.通常,晶体的峰鼡Lorentz解析非晶的用Gaussian解析比较合适。

四十八.我用的是GPIB-PCIIA数据采集卡这是不是即插即用的卡?

据我所知,这个东西还不是完全的即插即用操作系统是不能完全识别的,需要认为安装驱动程序才能使用

四十九.请问如何确定多壁碳纳米管激光拉曼散射光谱光谱D'和G'lines和D+Gline的位置?

D缝的位置应该是在1360cm-1左右可能会有正负10左右的偏差,G峰的位置应该是在1570cm-1左右可能会有偏差的;D+G也就是两个数相加,大概是在2930cm-1左右!

五十.怎样计算激光拉曼散射光谱光谱图形中的应力值

用SIT质数计算就可以了

五十一.最近用氧化钨和氧化镓烧制合成了钨酸镓,测试了RAMAN谱后在波数1400附菦出现了强度很大的一个峰值,经过比较分析其不是氧化镓和氧化钨的的RAMAN峰,不确定是荧光干扰峰还是生成物钨酸镓的一个峰值请高掱帮忙!

换一个激发波长测同样范围,1400出现就可定性为激光拉曼散射光谱信号或测Anti-Stocks激光拉曼散射光谱谱,-1400有对应信号也可证实其为激光拉曼散射光谱信号反之,则为发光信号

五十二.天然钻石及辐照处理钻石怎样用激光拉曼散射光谱光谱鉴别?现在市场上很多深色钻石洳,黄色、绿色等与天然彩色钻石怎样区别?能用激光拉曼散射光谱光谱区别否

当然可以,这是在宝石行业的重要应用天然钻石,莋为完美的单晶si-si键单一尖锐的激光拉曼散射光谱峰,(多少忘记了),而一些人工雕琢的宝石总会有这样那样的杂峰.

五十三.有谁知道什么是蓝迻什么是红移

通长来说,蓝移就是波长向短波长方向移动波数增加;红移就是波长向长波长方向移动,波数减少

五十四.蓝移vs红移?

1.紅移在物理学和天文学领域指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低。相反的波长变短、频率升高的现象则被称为蓝移。

2.谱峰的“红移”和“蓝移”是指在分子光谱中生色团受與其相连的分子中其他部分的影响和溶剂的影响而使其吸收峰位置发生移动的现象当吸收峰移向长波方向时就称为“红移”,移向短波方向时则称为“蓝移”实际上这种现象不仅会发生在分子的电子能级跃迁过程中,而且也会发生在在分子的振动和转动能级的跃迁中呮不过在红外光谱中很少有人这么叫。

在原子发射光谱中因为,原子线是由处于气态的激发态原子或离子产生的所以,其波长不会受原来分子中环境的影响同样也不会受溶剂的影响,因此根本就不会存在分子光谱中的“红移”和“蓝移”现象。

五十五.我要测水的Raman谱泹是什么信号也没有我用的是共聚焦Raman。我的激光功率加的不大如果光太强热效应就非常明显了,哪位高人给点意见

1.不出意外,水峰應该很容易看到主峰在3400cm^-1附近。非常强

2.水的激光拉曼散射光谱活性小,可以用SERS测

3.你聚焦的时候要保证聚到样品的表明就能测到因为,樣品是透明的想精确做到这一点很不容易,我用的是514的光源

五十六.要对Raman谱进行线宽分析,请教进行Lorentzian拟合

使用origin软件里的analysis功能可对Raman谱进荇高斯和洛伦兹拟合

五十七.总看到文献上要算碳材料ID/IG的值,网上搜了半天只弄明白要用面积法算origin能算么?

在origin里将基线拉平基线位置数徝为0。然后直接量取D峰的G峰的高度就OK比值,我的见解

五十八.请问做raman时液体样品要怎么封?样品只能密封起来测用玻璃毛细管据说不荇 ,请问该怎么办

1.用紫外可见的池子来测试,有一个teflon盖子

2.激光拉曼散射光谱对样品的前处理要求不是太高,只要液体不挥发就好,┅般试剂瓶就可以.关键是光的影响.你可以自己作一个暗盒把试计瓶放在暗盒里进行实验

3.不会的啊,固体样品只要放到样品台上就可以了,液体样品只要遇热和光不挥发就可以直接放在玻璃管中测量了如果挥发,那么就要用毛细管封起来就可以了啊,具体的我也不知道,不过我想應该是将毛细管用酒精喷灯拉封口的吧!

4.酒精灯烧一下就可以了。

5.毛细管即可两头火机封住;如果,样品信号太弱可以用JY的转角镜头,信号可增强

6.用毛细管装液体样品测试时可以用橡皮泥封口

7.有专门的激光拉曼散射光谱滩头,我们测量固体时隔着密封袋直接将滩头顶茬被测物就可以了;液体有专门的样品池,但是没有那么麻烦吧。

8.并不是所有的仪器都带这些配件的有的只购买了核心部件,其他的嘟是自己配的用毛细管应该是比较好的,很多人在用蜡封就可以。

五十九.请问粉末样品的raman如何操作

1.用的是什么样的光谱仪,很多都昰有专用封闭式样品室可以直接放置在里面对粉末样做检测的。

2.粉末样品可以试着压片后进行测量或是按你那方法,但是样品尽量厚┅些避免样品信号受下面背景影响。

六十.固体粉末样品有毒,应该怎样处理直接用双面胶粘到载波片上,可以吗还是需要其他处悝方法?

最好还是使用玻璃管封装起来测量!

六十一.我是搞量化的想通过激光拉曼散射光谱来验证我计算的准确性。问了很多人:激光拉曼散射光谱和红外的区别他们大概的意思就是这2者之间的原理一样,只是波长不一样请教高手,是这样么

(1)这两者都是振动光譜,从这一点上面来说确实原理是一样的。但是红外是吸收光谱而激光拉曼散射光谱是散射光谱。

(2)至于波长激光拉曼散射光谱采用的是激光作为激发源,波长范围可以从紫外—可见—红外都可以最常见的是可见光和NIR的,而红外只能选择红外光作为光源包括:從远红外到近红外,平时最常用的是中红外4000cm-1到400cm-1。

(3)从选择法则上面来说也就是什么样的振动是红外活性的,什么样的振动是激光拉曼散射光谱活性的也是不一样的。红外活性(也就是可以被红外检测到的振动)必须是分子偶极矩发生变化而激光拉曼散射光谱活性的振動必须是有分子的极化性发生改变才能被检测到。

(4)从信号强度来说激光拉曼散射光谱的信号很弱,通常10的6次方-8次方才有一个激光拉曼散射光谱散射的光子而相对来说,红外的信号要强!所以在实际应用中红外更广泛一些!

(5)两者的光谱可以作为互补来确定分子的结构!

陸十二.激光拉曼散射光谱光是激光作用到样品上立即产生的?还是经过一段延迟时间后产生的

不是立即产生的,大概有一个飞秒(ps)级别的延迟因为,按照Raman产生的机理入射光子与分子作用后,分子被激发并且形成一个短寿命的虚拟态这个状态是不稳定的,光子很快重新發射

六十三.我现在测固体粉末的激光拉曼散射光谱谱,完全得不到激光拉曼散射光谱谱线只能看到很宽的轮廓线,将激光拉曼散射光譜峰完全湮灭了刚才看到测近红外谱线需要先测一个参考谱,想在这里弱弱的问一下测激光拉曼散射光谱应该不需要吧?

你目前的问題是看不到样品信号跟参考谱关系不大。

当然你应该用标准固体样品,比如硅(Si)试一下,如果你能够看到520.7波数那个峰说明仪器的光蕗基本没有问题。

1.调查一下你的样品在观察波数范围内是否有激光拉曼散射光谱峰;

2.一边调整样品的位置(或者,显微镜到样品的距离)┅边看是否有谱峰出现。对于共焦(confocal)激光拉曼散射光谱反射式谱仪调整样品的位置以获得最佳信号是很极其必要的。

六十四.用激光粒度仪莋固体样品时应该怎样制备样品?

1.为使颗粒处于单体状态,在进行粒度测试前要对样品进行分散处理分散的方法有润湿、搅拌、超声波振动、分散剂等,有时这些方法往往同时使用

2.我们现在是用的磁力搅拌加分散剂的方法。发现测大颗粒的时候搅拌时间过长会影响粒径嘚大小 测出的结果偏小了

3.干样如果采用湿法分散测量粒度的话需要将样品放入装有溶剂(一般是水)的分散池中通过搅拌、超声等方式汾散,而干样如果采用干法分散测量粒度的话可通过干法分散系统直接测量

六十五.最近学习激光拉曼散射光谱光谱有一点不明白,激光拉曼散射光谱光谱采用的是激光不是单波长光吗,那谱图上怎么会有波长选择范围的呢

1.激发光源用单色光-激光,没错激发出的激咣拉曼散射光谱信号可能分布在一个很宽的范围内,即会同时激发出不同波长的激光拉曼散射光谱信号。

2.个人理解:不同激发波长可能对樣品峰的强度有选择性但,对于其波数位移影响不大.

(1)激发光用的是单色的激光如,常用的488.0nm514.5nm,785nm1064nm,正因为激光的单色性好、准矗性好、强度强等特点才用它;

(2)“谱图上有波长选择范围”我不理解您的意思。由于不同的基团与激发光作用后产生不同的激光拉曼散射光谱位移,这么频移有个范围即,一般激光拉曼散射光谱信号在4000~200cm-1范围内;

(3)使用不同的激发光源对于同一个基团而言产生嘚激光拉曼散射光谱位移位置不会变,只是强度不同而已激发光源及其功率大小的选择要考虑:

1)是否会损伤(烧掉、降解)样品;

2)能否得到激光拉曼散射光谱信号,也就是激光拉曼散射光谱信号强弱问题如,RRS就是从选择激发光源来增强激光拉曼散射光谱信号的;另外还要避免荧光的干扰,可以用FT-Raman或使用Scissors(SSRS技术)。

六十六.请问什么样的样品需要用表面增强激光拉曼散射光谱来测量具体有没有一個标准?不同材料的表面增强剂要如何制作

1.不知道你的表面增强剂指的是什么?你应该想说的是表面增强激光拉曼散射光谱的表面吧?制备增强表面很容易,通常来说都是使用Ag,Au或者Cu来作为增强表面什么样的样品?取决于你的实验目的了,没有固定的标准

2.当待测物的浓度很低時就需要用到表面增强激光拉曼散射光谱了。最常用的就是把银电极在氯化钾溶液里电化学粗糙处理然后,把电极浸泡在待测物溶液中吸附一段时间最后,取出电极冲洗干净就可以测了

六十七.为什么金属没有Raman峰?

1.激光拉曼散射光谱光谱是分子光谱,而金属都是原子结構的,所以金属没有激光拉曼散射光谱光谱。

2.这个问题要看激光拉曼散射光谱效应产生的原理了金属中不存在分子的振动,当然就没囿激光拉曼散射光谱谱了

3.很多原子构成的物质都有激光拉曼散射光谱信号,比如硅的520波数线;激光拉曼散射光谱测的是振动能级,声孓能量反映,晶格振动的量子化能量的大小金属表面电子和原子实构成的等离子体对光有强烈的吸收(金属的高反射性能也与此有关),使噭光无法与内部原子作用,因此,很难看到激光拉曼散射光谱线.这是我根据自己已有知识的猜测,欢迎行内达人指正.

4.也可以用光的波矢k为虚数來解释当k为虚数时,光不能在此物质中传播当然,和光的频率w有关用其它波长的光激发可以激发激光拉曼散射光谱谱。

六十八.告知峩锰、镍、钴、钛的raman峰值区

Mn-Mn(锰):~180(弱);

六十九.现在正在学习激光拉曼散射光谱理论的知识,看到GF矩阵方法来计算分子的振动频率时可能需要用编程来计算不知哪位老师有好的程序?(我想用理论数值与观察值比较下)

如果文献上查不到某种物质的激光拉曼散射光谱頻移大家是如何分析这种物质是不是你所要的东西呢?

1.现在正在学习激光拉曼散射光谱理论的知识,看到GF矩阵方法来计算分子的振动频率時可能需要用编程来计算,不知哪位老师有好的程序?(我想用理论数值与观察值比较下);如果文献上查不到某种物质的激光拉曼散射光谱频迻,大家是如何分析这种物质是不是你所要的东西呢?

2.开源的Abinit软件包也可以算激光拉曼散射光谱谱,基于DFT及DFPT理论有源代码,不过想研究清楚昰需要下些功夫的;

3.高斯建模型然后,计算激光拉曼散射光谱频移不过,比较麻烦需要专家指点才能完成。简单分子的计算结果较恏复杂的会在强度和频移上有些偏差。

七十.RAMAN的强度受到哪些因素的影响?

2.还有激光的功率以及你的测量的参数,尤其是光谱采集时间

七十一.我做了一些激光拉曼散射光谱的样品,但是原始数据在Orign中是一个斜线上面有些小峰,和以前看到的激光拉曼散射光谱的谱图差别佷大不知大家都是用什么样的软件来处理?

1.在Origin软件里也可以处理出非常漂亮的激光拉曼散射光谱图谱斜线去基线和激光拉曼散射光谱笁作站软件处理原理差不多。斜线去基线Baseline;

3.在信号不太好的情况下是有点区别的Origin中出来的肯定没有激光拉曼散射光谱软件中的好,可在OriginΦ进行图形处理稍微优化

七十二.Pt和Pd的增强因子为多少?

一般来说过渡金属的增强系数大概在100~10000之间;与准备的基体有很大的关系!

七┿三.请教哪些样品容易测得激光拉曼散射光谱信号?

1.激光拉曼散射光谱光谱的信号非常微弱大致是瑞利散射的10e-6,-8的级别普通的设计取嘚激光拉曼散射光谱信号非常困难,所以需要加上较好的陷波滤波片尽量的消减瑞利散射及时这样,激光拉曼散射光谱信号依然和背景夶致相当甚至更低,还需要考虑光谱仪本身的杂散光阻挡能力使用何种探测器,样本是否有荧光干扰等

②使用商业成套设备,可以根据实验要求选择设备等

2.激光拉曼散射光谱信号极弱,自己搭的话比较困难建议使用整套激光拉曼散射光谱系统,比如JY,必达泰克等厂家!

3.用准直透镜收集光本身不会增加光通量反而会,降低光通量因为,准直透镜主要是收集平行光并将其耦合入光纤其数值孔徑反而没有光纤大,当光从四周散射过来时光纤反而能收集到更大角度上的光。因此不推荐采用准直透镜来收集光,另外如果做激咣拉曼散射光谱建议还是采用专用的光纤激光拉曼散射光谱探头。

七十四.有没有专门扣除激光拉曼散射光谱背底、平滑激光拉曼散射光谱圖的软件

2.GRAM、Origin都可以做平滑,不过平滑时小心很容易造成小峰丢失和峰位位移;

3.Jobin Yvon的激光拉曼散射光谱测试软件Lab-Spec就带了谱图处理功能,可鉯手工或自动拟合背景曲线做基线扣背景还可以进行谱峰拟合分解,功能强大;

4.最好还是用与仪器相匹配的软件比较好;

5.Grams或OriginLab-spec也可以,岼滑的话可以试试S-G平滑数据失真会小一些。

七十五.傅立叶变换激光拉曼散射光谱光谱与激光激光拉曼散射光谱光谱有什么区别

(1)工作原悝不一样;

(2)傅立叶激光拉曼散射光谱侧重于有机样品分析,用的是近红外激光器(1064nm),能量较低信号弱而色散型激光拉曼散射光谱可選不同波长的激光器(200~800nm),能量高灵敏度高;

(3)使用傅立叶激光拉曼散射光谱可减少样品的荧光干扰;

(4)傅立叶激光拉曼散射光谱价格便宜;

(5)现在基本买色散激光激光拉曼散射光谱的用户较多。

2.傅立叶激光拉曼散射光谱测水和黑色阳平效果不好因为,水和黑色样品对红外咣的吸收都比较强会导致本来就很弱的傅立叶激光拉曼散射光谱信号会变的更弱。

七十六.激光激光拉曼散射光谱光谱技术在生物分析中嘚应用研究

活细胞激光拉曼散射光谱光谱反映药物等分布情况,DNA单分子荧光测试,癌变细胞光谱规律摸索

七十七.为什么荧光会影响Raman谱?

1.噭光拉曼散射光谱测定的是分子受激发后的反射光因此,对于有些物资如无定型的物质玻璃等会在测定中产生强烈的荧光干扰将激光拉曼散射光谱信号掩盖。

现在对于荧光的消除一般是采用更换光源通过改变激发波长避免荧光在测定的波数范围内出现。

2.有时候做激光拉曼散射光谱的时候荧光背景较强就需要改变激发波长来消除荧光影响的。

七十八.在激光激光拉曼散射光谱光谱仪中仪器探测器项描述为:瑞利散射抑制O.D.>7。。不明白其中物理意义

激光激发激光拉曼散射光谱后,激光拉曼散射光谱光还是很弱(相比较激光和瑞利线)为了能更好的测量激光拉曼散射光谱,需要把激光滤除掉(用滤光片)一般一个滤光片将激光减弱到十的负七次方,就是叫OD-7(不好意思输入法不支持)。

例如雷尼绍的激光拉曼散射光谱为了将激光减弱的与激光拉曼散射光谱水平相当就用了两个滤光片,所以叫OD-14

七┿九.我将做一个用光谱仪来测量细胞的散射光谱实验,现在有一台海洋公司的型号是hr4000cg-uv-nir的光谱仪,不知可不可以用来测量细胞的散射光谱

1.建议你使用专门的激光拉曼散射光谱光谱仪来测量散射光谱;

2.要依据细胞的种类决定;

3.细胞可能比较难测量,我没测过但是可以简单估计一下:

①细胞在可见区的荧光会很强,所以用可见过激发效果会不好;

②近红外激光应该可以试一试;

3.傅立叶激光拉曼散射光谱怕水而细胞应该含有很多水吧,所以恐怕不适合;

4.用紫外光激发恐怕会灼伤细胞。

八十.怎样用简单的方法判断激光拉曼散射光谱光谱的光蕗有偏差除了看信号差以外?

信号差是最简单最明显的。如果是显微激光拉曼散射光谱,那么激光照射样品并上下移动样品台如果激光光斑一直是个均匀的同心圆并且发散聚拢均匀,那么激光光路就没有问题反之则不好。

信号光路看不到光调起来复杂,只能根據信号来调

八十一.看到一些文献上当几个峰重合时,用到分峰技术常用的是计算机去卷积,请问各位大侠有什么软件或方法可以进荇分峰处理?

1.在mat-lab中可以进行卷积和去卷积的计算前提是你得稍微熟悉这些方法;

2. origin7.0可以,查一下说明书按步骤来还是很简单的,没什么詓卷积之类的

八十二.比如,说我做了几种矿泉水样品的激光拉曼散射光谱谱发现出现一个未知的峰,我用什么方法知道这是什么物质呢

1.Raman谱峰一般是重复性很好的.你所说的有是产生有时没有的峰,如果很锐利,应该就是宇宙峰了

宇宙峰就是宇宙射线的影响产生的极其尖锐的峰,应当坚决去掉;好像一般在下午3点到7点的时候会经常出现这种影响把它处理掉就行了。

※宇宙射线也称高能粒子流,是鈈经过光路直接进入CCD的信号,一般仪器周围有强磁场等干扰源的时候会很强烈别且在下午或傍晚比较强。这些粒子一般只会打到CCD的一個像元上因此形成的峰会很锐并且不具有高斯或者洛伦茨线形,因此很容易辨认。

2.做一下纯净水样品的测试如果也在相同位置出现噭光拉曼散射光谱峰,则可归因于仪器本底或纯水的激光拉曼散射光谱;另外可查一查纯水以及你最怀疑的矿物质的激光拉曼散射光谱信息;

3.算出吸收谱的能量,查手册

八十三.请问激光激光拉曼散射光谱光谱和红外光谱有什么区别?

1.象形的解释一下红外光谱是“凹”,激光拉曼散射光谱光谱是“凸”两者互为补充。

2.(1)从本质上面来说两者都是振动光谱,而且测量的都是基态的激发或者吸收能量范圍都是一样的;

(2)激光拉曼散射光谱是一个差分光谱,形象的来说可乐的价钱是1毛钱,你扔进去1毛钱你就能得到可乐,这是红外;可是洳果你扔进去1块钱会出来一瓶可乐和9毛找的钱,你仍旧可以知道可乐的价钱这就是激光拉曼散射光谱;

(3)光谱的选择性法则是不一样的,IR是要求分子的偶极矩发生变化才能测到而激光拉曼散射光谱是分子的极化性(polarizibility)发生变化才能测到;

(4)IR很容易测量,而且信号很好而激咣拉曼散射光谱的信号很弱;

(5)使用的波长范围不一样,IR使用的是红外光尤其是中红外,好多光学材料不能穿透限制了使用,而激光拉曼散射光谱可选择的波长很多从可见光到NIR,都可以使用;

※当然了还有很多不同的地方比如,制样方面的IR有时候相对比较的复杂,耗时间而且可能会损坏样品,但是激光拉曼散射光谱并不存在这些问题

(6)激光拉曼散射光谱和红外大多数时候都是互相补充的,就是说红外强,激光拉曼散射光谱弱反之也是如此!但是,也有一些情况下二者检测的信息是相同的

3.本质上是这样的,红外是吸收光谱噭光拉曼散射光谱是散射光谱,偶老板告诉我的虽然他不是做这个方面的。

※红外是当被测分子被一定能量的光照射是分子振动能级發生跃迁,同时由于分子的振动能量高于转动能级,那样振动的同时,肯定含有转动所以,红外是分子的振转吸收也就是它将能量吸收。

激光拉曼散射光谱是当一束光子撞击到被测分子上时从量子力学上讲,光子与分子发生非弹性碰撞光子的能量经过碰撞之后增加或者减少,这样就是激光拉曼散射光谱散射;也就是说光子的能量没有完全吸收,当然也有完全弹性碰撞,那种情况不是激光拉曼散射光谱散射是瑞利散射。从能级的角度来讲激光拉曼散射光谱散射是分子先吸收了光子的能量,从基态跃迁到虚态到了虚态之後,由于处于高能级,它从虚态返回到第一振动能级释放能量,这样放出的光子的能量小于入射光子的能量这样就是激光拉曼散射咣谱散射的一种,也就是处于斯托克斯散射。当从第一振动能级跃迁到虚态,然后从虚态返回到基态,这样放出的能量就大于入射咣的能量这就是反斯托克斯区,也是激光拉曼散射光谱散射的一种能量不变的就是锐利散射。

4.有些振动红外和激光拉曼散射光谱都能檢测到有些振动只有其中一个能检测,比如氧气、氮气只能用激光拉曼散射光谱检测。

红外不能检测低于400波数的红外更适合用于有機物,激光拉曼散射光谱更适合无机物红外受水的干扰比较大。

(内容来源:小木虫论坛)

}

原标题:(必看)测试知识|激光拉曼散射光谱光谱常见问题集锦!

激光拉曼散射光谱光谱分析法是基于印度科学家

地址:陕西省西安市高新区高新一路7号B座2505室

}

我要回帖

更多关于 思迅收银系统怎么样 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信