大家好,我想给车载液压系统厂家配装遥控器,液压泵是双向的,油门是电子的。请问网友们怎么选呀。先谢谢了

液压传动的题,求答案!_百度知道
液压传动的题,求答案!
0 6 6 8 2 7 7 7 我秋
我把题发给你们~~秋BD不让我发~~
我有更好的答案
试题库及参考答案一、填空题1.液压系统中的压力取决于(
),执行元件的运动速度取决于(
( 负载 ;流量)2.液压传动装置由(
)四部分组成,其中(
)为能量转换装置。
(动力元件、执行元件、控制元件、辅助元件;动力元件、执行元件)3. 液体在管道中存在两种流动状态,(
)时粘性力起主导作用,(
)时惯性力起主导作用,液体的流动状态可用(
)来判断。
(层流;紊流;雷诺数)
4.在研究流动液体时,把假设既(
)的液体称为理想流体。
(无粘性;不可压缩)5.由于流体具有(
),液流在管道中流动需要损耗一部分能量,它由(
) 损失和(
) 损失两部分组成。
(粘性;沿程压力;局部压力)
6.液流流经薄壁小孔的流量与(
) 的一次方成正比,与(
) 的1/2次方成正比。通过小孔的流量对(
)不敏感,因此薄壁小孔常用作可调节流阀。
(小孔通流面积;压力差;温度)
7.通过固定平行平板缝隙的流量与(
)一次方成正比,与(
)的三次方成正比,这说明液压元件内的(
)的大小对其泄漏量的影响非常大 。
(压力差;缝隙值;间隙)
8. 变量泵是指(
)可以改变的液压泵,常见的变量泵有(
)是通过改变转子和定子的偏心距来实现变量,(
) 是通过改变斜盘倾角来实现变量。(排量;单作用叶片泵、径向柱塞泵、轴向柱塞泵;单作用叶片泵、径向柱塞泵;轴向柱塞泵)9.液压泵的实际流量比理论流量(
);而液压马达实际流量比理论流量(
(大;小)
10.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(
)。(柱塞与缸体、缸体与配油盘、滑履与斜盘)11.外啮合齿轮泵的排量与(
) 的平方成正比,与的(
) 一次方成正比。因此,在齿轮节圆直径一定时,增大(
),减少 (
)可以增大泵的排量。
(模数、齿数;模数 齿数 )12.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(
)腔,位于轮齿逐渐进入啮合的一侧是(
(吸油;压油)
13.为了消除齿轮泵的困油现象,通常在两侧盖板上开 (
) ,使闭死容积由大变少时与(
) 腔相通,闭死容积由小变大时与 (
)腔相通。
( 卸荷槽;压油;吸油)
14.齿轮泵产生泄漏的间隙为(
)间隙和(
)间隙,此外还存在(
) 间隙,其中(
)泄漏占总泄漏量的80%~85%。
(端面、径向;啮合;端面) 18.溢流阀为(
)压力控制,阀口常(
),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为(
)压力控制,阀口常(
),先导阀弹簧腔的泄漏油必须(
(进口;闭 ;出口;开; 单独引回油箱)19.调速阀是由(
)和节流阀(
) 而成,旁通型调速阀是由(
)和节流阀(
(定差减压阀,串联;差压式溢流阀,并联)20.为了便于检修,蓄能器与管路之间应安装(
),为了防止液压泵停车或泄载时蓄能器内的压力油倒流,蓄能器与液压泵之间应安装 (
(截止阀;单向阀)
21.选用过滤器应考虑(
)和其它功能,它在系统中可安装在(
)和单独的过滤系统中。
(过滤精度、通流能力、机械强度;泵的吸油口、泵的压油口、系统的回油路上 )
23.在变量泵—变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将 (
) 调至最大,用(
) 调速;在高速段,(
)为最大,用(
(马达排量,变量泵;泵排量,变量马达)25.顺序动作回路的功用在于使几个执行元件严格按预定顺序动作,按控制方式不同,分为(
)控制和(
)控制。同步回路的功用是使相同尺寸的执行元件在运动上同步,同步运动分为(
)同步和(
) 同步两大类。
(压力,行程;速度,位置) 二、选择题
1.流量连续性方程是(
)在流体力学中的表达形式,而伯努力方程是(
)在流体力学中的表达形式。 (A)能量守恒定律 (B)动量定理 (C)质量守恒定律 (D)其他
(C;A)2.液体流经薄壁小孔的流量与孔口面积的(
)和小孔前后压力差的(
)成正比。 (A)一次方 (B)1/2次方 (C)二次方 (D)三次方
(A;B)3.流经固定平行平板缝隙的流量与缝隙值的(
)和缝隙前后压力差的(
)成正比。 (A)一次方 (B)1/2次方 (C)二次方 (D)三次方
(D;A)4.双作用叶片泵具有(
)的结构特点;而单作用叶片泵具有(
)的结构特点。(A) 作用在转子和定子上的液压径向力平衡 (B) 所有叶片的顶部和底部所受液压力平衡 (C) 不考虑叶片厚度,瞬时流量是均匀的 (D) 改变定子和转子之间的偏心可改变排量
(A、C;B、D)5.一水平放置的双伸出杆液压缸,采用三位四通电磁换向阀,要求阀处于中位时,液压泵卸荷,且液压缸浮动,其中位机能应选用(
);要求阀处于中位时,液压泵卸荷,且液压缸闭锁不动,其中位机能应选用(
(D;B)6.有两个调整压力分别为5MPa和10MPa的溢流阀串联在液压泵的出口,泵的出口压力为(
);并联在液压泵的出口,泵的出口压力又为(
)。 (A) 5MPa (B) 10MPa (C)15MPa (D)20MPa
(C;A) 8.为平衡重力负载,使运动部件不会因自重而自行下落,在恒重力负载情况下,采用(
)顺序阀作平衡阀,而在变重力负载情况下,采用(
)顺序阀作限速锁。 (A)内控内泄式 (B)内控外泄式 (C)外控内泄式
D)外控外泄式
(B;D)9.顺序阀在系统中作卸荷阀用时,应选用(
)型,作背压阀时,应选用(
)型。 (A)内控内泄式 (B)内控外泄式 (C)外控内泄式 (D)外控外泄式
(C;A) 10.双伸出杠液压缸,采用活塞杠固定安装,工作台的移动范围为缸筒有效行程的(
);采用缸筒固定安置,工作台的移动范围为活塞有效行程的(
)。 (A)1倍 (B)2倍 (C)3倍 (D)4倍
(B;C)11.对于速度大、换向频率高、定位精度要求不高的平面磨床,采用(
)液压操纵箱;对于速度低、换向次数不多、而定位精度高的外圆磨床,则采用(
)液压操纵箱。 (A) 时间制动控制式
(B)行程制动控制式 (C)时间、行程混合控制式
(A、C;B)12.要求多路换向阀控制的多个执行元件实现两个以上执行机构的复合动作,多路换向阀的连接方式为(
),多个执行元件实现顺序动作,多路换向阀的连接方式为(
)。 (A)串联油路 (B)并联油路 (C)串并联油路 (D)其他
(A;C) 13.在下列调速回路中,(
)为流量适应回路,(
)为功率适应回路。 (A) 限压式变量泵和调速阀组成的调速回路
(B) 差压式变量泵和节流阀组成的调速回路 (C) 定量泵和旁通型调速阀(溢流节流阀)组成的调速回路 (D) 恒功率变量泵调速回路
(A、B、D; B)14.容积调速回路中,(
)的调速方式为恒转矩调节;(
)的调节为恒功率调节。 (A)变量泵—变量马达
(B)变量泵—定量马达
(C)定量泵—变量马达
(B;C) 15.已知单活塞杠液压缸的活塞直径D为活塞直径d的两倍,差动连接的快进速度等于非差动连接前进速度的(
);差动连接的快进速度等于快退速度的(
)。 (A)1倍 (B)2倍 (C)3倍 (D)4倍
(D;C) 16.有两个调整压力分别为5MPa和10MPa的溢流阀串联在液压泵的出口,泵的出口压力为(
);有两个调整压力分别为5MPa和10MPa内控外泄式顺序阀串联在液泵的出口,泵的出口压力为(
)。 (A)5Mpa
B)10MPa (C)15MPa
(C;B) 17.用同样定量泵,节流阀,溢流阀和液压缸组成下列几种节流调速回路,(
)能够承受负值负载,(
)的速度刚性最差,而回路效率最高。 (A)进油节流调速回 (B)回油节流调速回路 (C)旁路节流调速回路
(B、C) 18.为保证负载变化时,节流阀的前后压力差不变,是通过节流阀的流量基本不变,往往将节流阀与(
)串联组成调速阀,或将节流阀与(
)并联组成旁通型调速阀。 (A)减压阀 (B)定差减压阀 (C)溢流阀 (D)差压式溢流阀
(B;D) 19.在定量泵节流调速阀回路中,调速阀可以安放在回路的(
),而旁通型调速回路只能安放在回路的(
)。 (A)进油路 (B)回油路 (C)旁油路
(A、B、C;A)20.差压式变量泵和(
)组成的容积节流调速回路与限压式变量泵和(
)组成的调速回路相比较,回路效率更高。 (A)节流阀 (B)调速阀 (C)旁通型调速阀
21.液压缸的种类繁多,(
)可作双作用液压缸,而(
)只能作单作用液压缸。 (A)柱塞缸 (B)活塞缸 (C)摆动缸
(B、C;A) 22.下列液压马达中,(
)为高速马达,(
)为低速马达。 (A)齿轮马达 (B)叶片马达 (C)轴向柱塞马达 (D)径向柱塞马达
(A、B、C;D) 23.三位四通电液换向阀的液动滑阀为弹簧对中型,其先导电磁换向阀中位必须是(
)机能,而液动滑阀为液压对中型,其先导电磁换向阀中位必须是(
)机能。 (A)H型 (B)M型 (C)Y型 (D)P型
(C;D) 24.为保证锁紧迅速、准确,采用了双向液压锁的汽车起重机支腿油路的换向阀应选用(
)中位机能;要求采用液控单向阀的压力机保压回路,在保压工况液压泵卸载,其换向阀应选用(
)中位机能。 (A)H型 (B)M型 (C)Y型 (D)D型
(A、C ;A、B )25.液压泵单位时间内排出油液的体积称为泵的流量。泵在额定转速和额定压力下的输出流量称为(
);在没有泄漏的情况下,根据泵的几何尺寸计算而得到的流量称为(
),它等于排量和转速的乘积。 (A)实际流量 (B)理论流量 (C)额定流量
(C;B) 26.在实验中或工业生产中,常把零压差下的流量(即负载为零时泵的流量)视为(
);有些液压泵在工作时,每一瞬间的流量各不相同,但在每转中按同一规律重复变化,这就是泵的流量脉动。瞬时流量一般指的是瞬时(
)。 (A)实际流量 (B)理论流量 (C)额定流量
(B;B) 27.对于双作用叶片泵,如果配油窗口的间距角小于两叶片间的夹角,会导致(
),配油窗口的间距角不可能等于两叶片间的夹角,所以配油窗口的间距夹角必须大于等于两叶片间的夹角。(A) 由于加工安装误差,难以在工艺上实现 (B) 不能保证吸、压油腔之间的密封,使泵的容积效率太低 (C) 不能保证泵连续平稳的运动
(B;A) 28.双作用式叶片泵中,当配油窗口的间隔夹角&定子圆弧部分的夹角&两叶片的夹角时,存在(
),当定子圆弧部分的夹角&配油窗口的间隔夹角&两叶片的夹角时,存在(
)。 (A) 闭死容积大小在变化,有困油现象 (B) 虽有闭死容积,但容积大小不变化,所以无困油现象 (C) 不会产生闭死容积,所以无困油现象
(A;B) 29.当配油窗口的间隔夹角&两叶片的夹角时,单作用叶片泵(
),当配油窗口的间隔夹角&两叶片的夹角时,单作用叶片泵(
)。 (A) 闭死容积大小在变化,有困油现象 (B) 虽有闭死容积,但容积大小不变化,所以无困油现象 (C) 不会产生闭死容积,所以无困油现象
(A;C) 30.双作用叶片泵的叶片在转子槽中的安装方向是(
),限压式变量叶片泵的叶片在转子槽中的安装方向是(
)。 (A) 沿着径向方向安装 (B) 沿着转子旋转方向前倾一角度 (C) 沿着转子旋转方向后倾一角度
(B、A;C) 31.当限压式变量泵工作压力p&p拐点时,随着负载压力上升,泵的输出流量(
);当恒功率变量泵工作压力p&p拐点时,随着负载压力上升,泵的输出流量(
(B)呈线性规律衰减
(C)呈双曲线规律衰减
(D)基本不变
(B;C) 32.已知单活塞杆液压缸两腔有效面积A1=2A2,液压泵供油流量为q,如果将液压缸差动连接,活塞实现差动快进,那么进入大腔的流量是(
),如果不差动连接,则小腔的排油流量是(
)。 (A)0.5q
(B)1.5 q
(C)1.75 q
(D;A) 33.在泵-缸回油节流调速回路中,三位四通换向阀处于不同位置时,可使液压缸实现快进—工进-端点停留—快退的动作循环。试分析:在(
)工况下,泵所需的驱动功率为最大;在(
)工况下,缸输出功率最小。
(B)工进 (C)端点停留 (D)快退
(B、C;C) 34.系统中中位机能为P型的三位四通换向阀处于不同位置时,可使单活塞杆液压缸实现快进—慢进—快退的动作循环。试分析:液压缸在运动过程中,如突然将换向阀切换到中间位置,此时缸的工况为(
);如将单活塞杆缸换成双活塞杆缸,当换向阀切换到中位置时,缸的工况为(
)。(不考虑惯性引起的滑移运动) (A)停止运动
(D;A) 35.在减压回路中,减压阀调定压力为pj ,溢流阀调定压力为py ,主油路暂不工作,二次回路的负载压力为pL。若py&pj&pL,减压阀进、出口压力关系为(
);若py&pL&pj,减压阀进、出口压力关系为(
)。(A)进口压力p1=py , 出口压力p2=pj (B)进口压力p1=py , 出口压力p2=pL (C)p1=p2=pj ,减压阀的进口压力、出口压力、调定压力基本相等 (D)p1=p2=pL ,减压阀的进口压力、出口压力与负载压力基本相等
(D;A) 36.在减压回路中,减压阀调定压力为pj ,溢流阀调定压力为py ,主油路暂不工作,二次回路的负载压力为pL。若py&pj&pL,减压阀阀口状态为(
);若py&pL&pj,减压阀阀口状态为(
)。(A)阀口处于小开口的减压工作状态 (B)阀口处于完全关闭状态,不允许油流通过阀口 (C)阀口处于基本关闭状态,但仍允许少量的油流通过阀口流至先导阀 (D)阀口处于全开启状态,减压阀不起减压作用
37.系统中采用了内控外泄顺序阀,顺序阀的调定压力为px(阀口全开时损失不计),其出口负载压力为pL。当pL&px时,顺序阀进、出口压力间的关系为(
);当pL&px时,顺序阀进出口压力间的关系为(
(A)p1=px, p2=pL
(p1≠p2)(B)p1=p2=pL(C)p1上升至系统溢流阀调定压力p1=py ,p2=pL (D)p1=p2=px
38.当控制阀的开口一定,阀的进、出口压力差Δp&(3~5)ⅹ105Pa时,随着压力差Δp变小,通过节流阀的流量(
);通过调速阀的流量(
)。 (A) 增加
(C)基本不变
(D)无法判断
39.当控制阀的开口一定,阀的进、出口压力差Δp&(3~5)ⅹ105Pa时,随着压力差Δp增加,压力差的变化对节流阀流量变化的影响(
);对调速阀流量变化的影响(
)。 (A) 越大
(C)基本不变
(D)无法判断
40.当控制阀的开口一定,阀的进、出口压力相等时,通过节流阀的流量为(
);通过调速阀的流量为(
)。 (A) 0
(B)某调定值
(C)某变值
(D)无法判断
41.在回油节流调速回路中,节流阀处于节流调速工况,系统的泄漏损失及溢流阀调压偏差均忽略不计。当负载F增加时,泵的输入功率(
),缸的输出功率(
(A) 增加 (B)减少
(C)基本不变
(D)可能增加也可能减少
42.在调速阀旁路节流调速回路中,调速阀的节流开口一定,当负载从F1降到F2时,若考虑泵内泄漏变化因素时液压缸的运动速度v(
);若不考虑泵内泄漏变化的因素时,缸运动速度v可视为(
)。 (A)增加
(D)无法判断
43.在定量泵-变量马达的容积调速回路中,如果液压马达所驱动的负载转矩变小,若不考虑泄漏的影响,试判断马达转速(
);泵的输出功率(
)。 (A)增大
(C)基本不变
(D)无法判断
44.在限压式变量泵与调速阀组成的容积节流调速回路中,若负载从F1降到F2而调速阀开口不变时,泵的工作压力(
);若负载保持定值而调速阀开口变小时,泵工作压力(
)。 (A) 增加 (B)减小
45.在差压式变量泵和节流阀组成的容积节流调速回路中,如果将负载阻力减小,其他条件保持不变,泵的出口压力将(
),节流阀两端压差将(
)。 (A) 增加
(B;C) 46.在气体状态变化的(
)过程中,系统靠消耗自身的内能对外做功;在气体状态变化的(
)过程中,无内能变化,加入系统的热量全部变成气体所做的功。
(A)等容过程
(B)等压过程
(C)等温过程
(D)绝热过程
(D;C)47.每立方米的湿空气中所含水蒸气的质量称为(
);每千克质量的干空气中所混合的水蒸气的质量称为(
)。(A)绝对湿度
(B)相对湿度
(C)含湿量
(D)析水量
48.在亚声速流动时,管道截面缩小,气流速度(
);在超声速流动时,管道截面扩大,气流速度(
)。(A)增加
(A;A)49.当a、b两孔同时有气信号时,s口才有信号输出的逻辑元件是();当a或b任一孔有气信号,s口就有输出的逻辑元件是()。(A)与门
50.气动仪表中,(
)将检测气信号转换为标准气信号;(
)将测量参数与给定参数比较并进行处理,使被控参数按需要的规律变化。(A)变送器
(B)比值器
(C)调节器
(D)转换器
(A;C)51.为保证压缩空气的质量,气缸和气马达前必须安装(
);气动仪表或气动逻辑元件前应安装(
)。(A)分水滤气器-减压阀-油雾器(B)分水滤气器-油雾器-减压阀(C)减压阀-分水滤气器-油雾器(D)分水滤气器-减压阀
三、判断题1. 液压缸活塞运动速度只取决于输入流量的大小,与压力无关。 (○) 2.液体流动时,其流量连续性方程是能量守恒定律在流体力学中的一种表达形式。 (×) 3.理想流体伯努力方程的物理意义是:在管内作稳定流动的理想流体,在任一截面上的压力能、势能和动能可以互相转换,但其总和不变。 (○)4.雷诺数是判断层流和紊流的判据。 (×)5.薄壁小孔因其通流量与油液的粘度无关,即对油温的变化不敏感,因此,常用作调节流量的节流器。 (○)6.流经缝隙的流量随缝隙值的增加而成倍增加。 (×)7.流量可改变的液压泵称为变量泵。 (×)8.定量泵是指输出流量不随泵的输出压力改变的泵。 (×)9.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。 (○) 10.配流轴式径向柱塞泵的排量q与定子相对转子的偏心成正比,改变偏心即可改变排量。
(○) 11.双作用叶片泵因两个吸油窗口、两个压油窗口是对称布置,因此作用在转子和定子上的液压径向力平衡,轴承承受径向力小、寿命长。
12.双作用叶片泵的转子叶片槽根部全部通压力油是为了保证叶片紧贴定子内环。
(×)13.液压泵产生困油现象的充分且必要的条件是:存在闭死容积且容积大小发生变化。 (○)14.齿轮泵多采用变位齿轮是为了减小齿轮重合度,消除困油现象。
(×)15.液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以用来做马达使用。
(×) 16.因存在泄漏,因此输入液压马达的实际流量大于其理论流量,而液压泵的实际输出流量小于其理论流量。 (○)
采纳率:75%
啥都没有!咱搞
为您推荐:
其他类似问题
液压传动的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。【中联车载泵遥控器 泵车专用遥控器】价格_厂家_图片 -Hc360慧聪网
您是不是在找:
买家还在看:
商品数量:
河北省&石家庄市
手机访问店铺
中联车载泵遥控器 泵车专用遥控器
[商品已下架]
&360 - &380
买家正在看
相关商品推荐
&2.40/套
&108.00/台
&200.00/台
商家等级:
所在地区:
河北省 石家庄市
认证信息:
同参数产品
产品类型:
同参数产品
同参数产品
同参数产品
配件适用对象:
同参数产品
正在加载中........
慧聪网厂家河北铁凝贸易有限公司为您提供中联车载泵遥控器 泵车专用遥控器的详细产品价格、产品图片等产品介绍信息,您可以直接联系厂家获取中联车载泵遥控器 泵车专用遥控器的具体资料,联系时请说明是在慧聪网看到的。
热门商品推荐
我的浏览记录
工程机械配附件相关资源
工程机械配附件相关热门专题
您在慧聪网上采购商品属于商业贸易行为。以上所展示的信息由卖家自行提供,内容的真实性、准确性和合法性由发布卖家负责,请意识到互联网交易中的风险是客观存在的。推荐使用慧付宝资金保障服务,保障您的交易安全!
按字母分类 :
让慧聪网撮合专家为您解决采购难题
您采购的产品:
请输入采购产品
您的手机号码:
请输入手机号码
*采购产品:
请输入采购产品
*采购数量/单位:
请输入采购数量
请选择单位
*采购截止日期:
请输入正确的手机号码
请输入验证码
*短信验证码:
<input id="valid_Code1" maxlength="6" placeholder="请输入验证码" name="VALIDCODE" class="codeInput" onkeyup="this.value=this.value.replace(/\D/g,'')" onkeypress="if(event.keyCode
57) event.returnValue =" type="text">
免费获取验证码
为了安全,请输入验证码,我们将优先处理您的需求!
请输入验证码
发送成功!
慧聪已收到您的需求,我们会尽快通知卖家联系您,同时会派出采购专员1对1为您提供服务,请您耐心等待!
电话:80 &&
联系人:赵树亮&总经理
公司名称:河北铁凝贸易有限公司
请输入正确的手机号码
请输入验证码
*短信验证码:
免费获取验证码
为了安全,请输入验证码,我们将优先处理您的需求!
请输入验证码
每一份需求都会在24小时内得到行业多家优质供应商报价。
每一份需求的报价供应商工商信用资质都会经过专业人员检验,交易安全有保障。
免费咨询行业专家
免费咨询行业专家
服务主题:
筛选发货地
验证供应商真伪
提供其他优质供应商
采购数量:
用途描述:
成功加入采购单!
当前采购单共3种货品
成功加入采购单!
当前采购单共3种货品
不能购买自己发布的产品!
选中货品中含失效货品,无法完成下单,可能是:
1.货品库存不足
2.货品已过期,或被卖家删除
3.货品不支持在线交易
卖家暂时不在线,留下联系方式,卖家会主动联系您
*我要采购:
我的姓名:
留言内容:液压泵正反转均出油的
提问者:网友
是正反转始终是同一个出油口出油(同一个进油口进油)?还是进油口和出油口随着旋向交替变化(进油变成出油,出油变成进油)?第一种情况可以选择径向柱塞泵,例如德国HAWE,或者山东德州的产品。第二种情况可以选择闭式油泵,或者双向齿轮泵。 ========================HAWE的R15.3或者R16.8都可以,最大压力可以达到16兆帕,排量11或者12.3。上网能找到销售商。
回答者:网友
相关已解答问题
在移动端查看:
还没有汽配人账号?爱卡汽车_中国领先的汽车主题社区、汽车资讯、汽车论坛中心液压(机械动力名词)_百度百科
清除历史记录关闭
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
?机械动力名词
(机械动力名词)
液压是机械行业、机电行业的一个名词。液压可以用动力传动方式
,成为。液压也可用作控制方式
称为。液压传动是以液体作为工作介质,利用液体的压力能来传递动力。
液压控制是以有压力液体作为控制信号传递方式的控制
。用液压技术构成的称为。液压控制通常包括液压和液压。液压闭环控制也就是,它构成液压伺服系统,通常包括电气液压伺服系统()和(机液伺服系统,或机液伺服机构)等
。一个完整的液压系统由五个部分组成,即能源装置、执行装置、控制调节装置、辅助装置、液体介质。液压由于其传递动力大,易于传递及配置等特点,在工业、民用行业应用广泛。液压系统的执行元件(和)的作用是将液体的压力能转换为机械能,从而获得需要的直线往复运动或回转运动。液压系统的能源装置(液压泵)的作用是将原动机的机械能转换成液体的压力能。
液压发展史
液压传动和称为流体传动,是根据17世纪帕斯卡提出的液体力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫·布拉曼(Joseph Braman,),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。
第一次世界大战()后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年(F.Vikers)发明了式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初o尼斯克(GoConstantimsco)对能量波动传递所进行的理论及实际研究;1910年对(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。
第二次世界大战()期间,在美国中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后,日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。
液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的、压力机械、机床等;行走机械中的工程机械、建筑机械、、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压基本信息
液压液压系统组成
一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和工作介质。
动力元件的作用是将原动机的机械能转换成液体的压力能。动力元件指液压系统中的液压泵,它向整个液压系统提供动力。液压泵的结构形式一般有、、、。
执行元件的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。执行元件有液压缸和液压马达。
控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。
根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为溢流阀(安全阀)、减压阀、顺序阀、等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。
辅助元件包括、、冷却器、加热器、油管、管接头、油箱、压力计、流量计、密封装置等,它们起连接、储油、过滤和测量油液压力等辅助作用,可参考《》《液压系统设计丛书》。
工作介质是指各类液压传动中的液压油或乳化液,有各种矿物油、乳化液和合成型液压油等几大类。液压系统就是通过其实现运动和动力传递的。
液压元件可分为动力元件和控制元件以及执行元件三大类。尽管都是液压元件,它们的自身功能和安装使用的技术要求也不尽相同,现分别介绍如下:
动力元件:指的是各种液压泵,、、、。
1、油泵和串联泵(包括外啮合与内啮合)两种结构型式。
2、(包括、变量泵、双级泵、双联泵)。
3、柱塞油泵,又分为轴向柱塞油泵和径向柱塞油泵,轴向柱塞泵有定量泵、变量泵、(变量泵又分为手动变量与变量、伺服变量等多种)从结构上又分为端面配油和阀式配油两种配油方式,而的配油型式,基本上为阀式配油。);
执行元件:和液压马达,液压缸有活塞液压缸、柱塞液压缸、摆动液压缸、组合液压缸;液压马达有齿轮式液压马达、叶片液压马达、柱塞液压马达;
控制元件:方向控制阀、、;
压力控制阀:溢流阀、减压阀、顺序阀、压力等;
流量控制阀:、、;
辅助元件:除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件{主要包括: 各种管接头(扩口式、焊接式、卡套式,sae)、高压球阀、、软管总成、测压接头、管夹等}及油箱等,它们同样十分重要。
与、电气传动相比,液压传动具有以下优点:
1、液压传动的各种元件,可以根据需要方便、灵活地来布置。
2、重量轻、体积小、运动惯性小、反应速度快
3、操纵控制方便,可实现大范围的(调速范围达2000:1)。
4、可自动实现过载保护。
5、一般采用矿物油作为工作介质,面可自行润滑,使用寿命长。
6、很容易实现直线运动。
7、很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的过程,而且可以实现遥控。
1、由于流体流动的阻力和泄露较大,所以效率较低。如果处理不当,泄露不仅污染场地,而且还可能引起火灾和爆炸事故。
2、由于工作性能易受到温度变化的影响,因此不宜在很高或很低的温度条件下工作。
3、液压元件的制造精度要求较高,因而价格较贵。
4、由于液体介质的泄露及可压缩性影响,不能得到严格的。
5、液压传动出故障时不易找出原因;使用和维修要求有较高的技术水平。
液压系统形式
液压元件逐步实现了标准化、系列化,其规格、品种、质量、性能都有了很大提高,尤其是采用电子技术、伺服技术等新技术新工艺后,液压系统的质量得到了显著的提高,其在国民经济及军事工业中发挥了重大作用。从不同的角度出发,可以把液压系统分成不同的形式。
(1)按油液的循环方式,液压系统可分为开式系统和闭式系统。开式系统是指液压泵从油箱吸油,油经各种控制阀后,驱动液压执行元件,回油再经过换向阀回油箱。这种系统结构较为简单,可以发挥油箱的散热、沉淀杂质作用,但因油液常与空气接触,使空气易于渗入系统,导致机构运动不平稳等后果。开式系统油箱大,油泵自吸性能好。闭式系统中,液压泵的进油管直接与执行元件的回油管相连,工作液体在系统的管路中进行封闭循环。其结构紧凑,与空气接触机会少,空气不易渗入系统,故传动较平稳。工作机构的变速和换向靠调节泵或马达的变量机构实现,避免了开式系统换向过程中所出现的液压冲击和能量损失。但闭式系统较开式系统复杂,因无油箱,油液的散热和过滤条件较差。为补偿系统中的泄漏,通常需要一个小流量的补油泵和油箱。由于单杆双作用油缸大小腔流量不等,在工作过程中会使功率利用下降,所以闭式系统中的执行元件一般为液压马达。
(2)按系统中液压泵的数目,可分为单泵系统,双泵系统和多泵系统。
(3)按所用液压泵形式的不同,可分为定量泵系统和变量泵系统。变量泵的优点是在调节范围之内,可以充分利用发动机的功率,但其结构和制造工艺复杂,成本高,可分为手动变量、尽可能控变量、伺服变量、压力补偿变量、恒压变量、液压变量等多种方式。
(4)按向执行元件供油方式的不同,可分为串联系统和并联系统。串联系统中,上一个执行元件的回油即为下一个执行元件的进油,每通过一个执行元件压力就要降低一次。在串联系统中,当主泵向多路阀控制的各执行元件供油时,只要液压泵的出口压力足够,便可以实现各执行元件的运动的复合。但由于执行元件的压力是叠加的,所以克服外载能力将随执行元件数量的增加而降低。并联系统中,当一台液压泵向一组执行元件供油时,进入各执行元件的流量只是液压泵输出流量的一部分。流量的分配随各件上外载荷的不同而变化,首先进入外载荷较小的执行元件,只有当各执行元件上外载荷相等时,才能实现同时动作。全液压传动机械性能的优劣,主要取决于液压系统性能的好坏,包括所用元件质量优劣,基本回路是否恰当等。系统性能的好坏,除满足使用功能要求外,应从液压系统的效率、功率利用、调速范围和微调特性、振动和噪声以及系统的安装和调试是否方便可靠等方面进行。现代工程机械几乎都采用了液压系统,并且与电子系统、计算机控制技术结合,成为现代工程机械的重要组成部分。
它是由两个大小不同的液缸组成的,在液缸里充满水或油。充水的叫“”;充油的称“”。两个液缸里各有一个可以滑动的活塞,如果在小活塞上加一定值的压力,根据定律,小活塞将这一压力通过液体的压力传递给大活塞,将大活塞顶上去。设小活塞的是S1,加在小活塞上的向下的压力是F1。于是,小活塞对液体的压强为P=F1/SI,能够大小不变地被液体向各个方向传递”。大活塞所受到的压强必然也等于P。若大活塞的横截面积是S2,P在大活塞上所产生的向上的压力F2=PxS2,截面积是小活塞横截面积的倍数。从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大的力,为此用来压制胶合板、榨油、提取重物、钢材等
液压原理在一定的机械、内,依靠液体介质的静压力,完成能量的积压、传递、放大,实现机械功能的轻巧化、科学化、最大化。
利用液压原理,可以构建,也可以构建。
对于小型润滑系统,可利用和设备规定的液压油相同的油品进行清洗工作。清洗过后的油不再符合润滑的要求,而且包含杂质太多,清洗完毕后必须彻底排除。经清洗后的润滑系统再加入规定的液压油。
有些维修后,用金属清洗剂或肥皂水清洗系统,再加液压油进行试机,发现大,油压不稳,认为该品牌的液压油质量差,把油排净后换另一品牌的油工作正常,就断定前一油差后一油好,其实这是冤案,前油替后油“受了过”,由于系统中残存的金属清洗剂中的表面活性剂组分污染了前油而使其抗泡性变差,使设备工作异常,前油排净时也同时把系统冲刷干净,后油也就正常了,类似情况经常发生。滤油就用油性滤纸,几块钱一张,将近半平方米。省事点就用汽车机油滤清器改装。做或买一个够大的油箱,侧面下部装滤纸或滤清器,箱上部装个气嘴接头,接上气泵加压,就能滤了。其他部分可以自己想了。
液压三大顽疾
液压系统主要有以下缺点:
1、发热 由于传力介质(液压油)在流动过程中存在各部位流速的不同,导致液体内部存在一定的内摩擦,同时液体和管路内壁之间也存在摩擦,这些都是导致液压油温度升高的原因。温度升高将导致内外泄漏增大,降低其机械效率。同时由于较高的温度,液压油会发生膨胀,导致压缩性增大,使控制动作无法很好的传递。解决办法:发热是液压系统的固有特征,无法根除只能尽量减轻。使用质量好的液压油、液压管路的布置中应尽量避免弯头的出现、使用高质量的管路以及管接头、液压阀等。
2、振动 液压系统的振动也是其痼疾之一。由于液压油在管路中的高速流动而产生的冲击以及控制阀打开关闭过程中产生的冲击都是振动的原因。强的振动会导致系统控制动作发生错误,也会使系统中一些较为精密的仪器发生错误,导致系统故障。解决办法:液压管路应尽量固定,避免出现急弯。避免频繁改变液流方向,无法避免时应做好减振措施。整个液压系统应有良好的减振措施,同时还要避免外来振源对系统的影响。
3、泄漏 液压系统的泄漏分为内泄漏和外泄漏。内泄漏指泄漏过程发生在系统内部,例如液压缸活塞两边的泄漏、控制阀阀芯与阀体之间的泄漏等。内泄漏虽然不会产生液压油的损失,但是由于发生泄漏,既定的控制动作可能会受到影响,直至引起系统故障。外泄漏是指发生在系统和外部环境之间的泄漏。液压油直接泄漏到环境中,除了会影响系统的工作环境外,还会导致系统压力不够引发故障。泄漏到环境中的液压油还有发生火灾的危险。解决办法:采用质量较好的密封件,提高设备的加工精度
另:对于液压系统这三大顽疾,有人进行了总结:“发烧、拉稀带得瑟”(这位总结者是)。液压系统用于,,,,起重机,等等大型工业,建筑,工厂,企业,还有升降机,,等等行业。
液压查找故障
一、根据液压系统图查找液压故障
在液压系统图分析排除故障时,主要方法是“抓两头”——即抓动力源(液压泵)和执行元件(、液压马达),然后是“连中间”,即从动力源到执行元件之间经过的管路和控制元件。“抓两头”时,要分析故障是否就出在液压泵、液压油缸和液压马达本身。“连中间”时除了要注意分析故障是否出在所连线路上液压元件外,还要特别注意弄清楚系统从一个转移到另一个工作状态时是采用哪种控制方式,控制信号是否有误,要针对实物,逐一检查,要注意各个主油路之间及主油路与控制油路之间有无接错而产生相互干涉现象,如有相互干涉现象,要分析是何等使用调节错误等。
二、利用因果图查找液压故障
利用因果图(又称鱼刺图)分析方法,对液压设备出现的故障进行分析,既能较快地找出故障主次原因,又能积累排除故障的经验。
因果图分析法,可以用将维护管理与查找故障密切结合起来,因而被广泛采用。
三、应用铁谱技术对液压系统的故障进行诊断和状态监控
铁谱技术是以机械摩擦副的磨损为基本出发点,借助于铁谱仪把液压油中的磨损颗粒和其他污染颗粒分离出来,并制成铁谱片,然后置于铁谱显微镜或扫描电子显微镜下进行观察,或按尺寸大小依次沉积在玻璃管内,应用光学方法进行定量检测。通过以上分析,可以准确地获得系统内有关磨损方面的重要信息。据此进一步研究磨损现象,监测磨损状态,诊断故障前兆,最后作出系统失效预报。
铁谱技术能有效地应用于工程机械液压系统油液污染程度的检测,监控,磨损过程的分析和故障诊断,并且具有直观、准确、信息多等优点。因此,他已成为对机械工程液压系统故障进行诊断分析的有力工具。
四、利用故障现象与故障原因相关分析表查找液压故障
根据工作实践,总结出故障现象与故障原因相关关系表(或由厂家提供),可以用于一般液压故障的查找和处理。
五、利用设备的自诊断功能查找液压故障
随着电子技术的不断发展,2012年,许多大中型工程机械,采用了控制、通过接口电路及传感技术,对其液压系统进行自诊断,并显示在荧光屏上,使用、维修者可根据显示故障的内容进行故障排除。
六、液压机的维护保养正确使用机器设备,认真进行维护保养和严格执行安全操作规程,是延长设备使用寿命,保证安全生产的必要条件,因此,操作者除应熟悉机器结构性能外,还应注意以下各点。
1、液压站的调试及维修需要专业人员,液压组件拆卸时,应将零件放在干净的地方。各个有密封的表面不能有划伤现象。
2、液压油是液压站工作时的能量传递介质,液压油的质量、清洁度、粘度对液压泵、液压阀及液压缸的寿命起到了主导地位,故在使用液压站时应高度重视液压油的质量和保持液压油的清洁。液压系统用油,必须经过严格的过滤,在液压系统中应配置滤油器。
3、在保证系统正常工作的条件下,液压泵的压力应尽量调得低些,背压阀的压力也尽可能调得低些,以减少能量损耗,减少发热。
4、为了防止灰尘和水等落入油液,油箱周围应保持清洁,应定期进行维护保养。
5、油箱的液面要经常保持足够的高度,使系统中的油液有足够的循环冷却条件,并注意保持油箱、油管等设备的清洁,以有利于散热。一般油温在30℃-55℃为安全温度是最适当的使用温度,性能最高,寿命最长。油温逾60℃,每上升8℃,其使用寿命将次第减半。
6、应尽量防止系统中各处的压力低于大气压力,同时应使用良好的密封装置,密封失效时应及时更换,所有受力螺钉如:缸口导套螺钉、活塞杆法兰螺钉等,要定期紧固以防松动。防止空气进入液压系统、漏油。
7、有水冷却器的系统,应保持冷却水量充足,管路畅通。有风冷却器的系统,应保持通风顺畅。防止油温过高。
8、有过滤器的系统,应定期清理或更换滤芯(约一个月),防止堵塞,油温上升过快,严重时会造成液压组件或油泵破裂。
9、系统工作压力是通过调压阀来调定液压泵的输出压力。一般情况,调定的压力不能超过其原来设计的额定压力,否则有可能造成液压泵损坏、液压阀卡死或电机烧坏等等现象。
10、液压阀及集成块的字母代号说明P为压力油口,T为回油口。A、B为接执行组件(液压缸)的工作油口。X或K为液压组件外控油口,Y或R为液压组件外泄油口。
11、为保证压机可靠运行,压机某些元件在达到使用寿命周期后,建议用户必须予以更换。12、将保养中已解决与未解决的主要问题记录入档,作为下次保养或安排检修计划的资料依据。
液压油缸安装
1开箱:内封有气化性防锈剂,所以,在装配前不得拆下入口的塞子。如果拆下塞子,必须立即安装在机体上,而且在油缸内放满油
2防锈:油缸安装在机体上以后,如果活塞在伸出的情况下放置时,必须在的露出部分涂敷油脂。
3速度:一般规格的油缸,当动作速度超过2m/s时,其使用寿命将会受到影响。以0.3m/s作为冲程末端的场合,为了保护机构和安全起见,建议内部安装缓冲机构。另外,使油缸停止时,为了保护油缸机构和安全起见,线路上也必须考虑,以防止发生很大的冲击。为了增加油缸的回油量,线路设计时应该特别注意。在0.5m/min以下低速运转时,将会影响到动作性(特别是振动),所以,低速运转时,应该进行洽谈。
4运转:运转初期,必须完全排清油缸内的空气。残留空气的场合,采取低速充分运转,排除空气。如果油缸内残留空气受急剧夹压时,那么,由于液压油的作用,有可能使烧损。另外,动作中如果油缸内部产生负压,那么,将有可能由于气蚀作用而发生异常。
液压系统马达
液压马达习惯上是指输出旋转运动的,将提供的液压能转变为机械能的能量转换装置。
液压特点及分类
从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外驱动旋转时,也可变为液压泵工况。因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。
但是,由于液压马达和液压泵的不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。
液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。按液压马达的额定转速分为高速和低速两大类。额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。高速液压马达的基本型式有齿轮式、螺杆式、叶片式 和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与连接,不需要减速装置,使大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。
液压工作原理
由于压力油作用,受力不平衡使转子产生转矩。叶片式液压马达的输出转矩与液压马达的排量和液压马达进出之间的压力差有关,其转速由输入液压马达的流量大小来决定。由于液压马达一般都要求能正反转,所以叶片式液压马达的叶片要径向放置。为了使叶片根部始终通有压力油,在回、压油腔通人叶片根部的通路上应设置单向阀,为了确保叶片式液压马达在压力油通人后能正常启动,必须使叶片顶部和定子内表面紧密接触,以保证良好的密封,因此在叶片根部应设置预紧弹簧。叶片式液压马达体积小,转动惯量小,动作灵敏,可适用于换向频率较高的场合,但泄漏量较大,低速工作时不稳定。因此叶片式液压马达一般用于转速高、转矩小和动作要求灵敏的场合。
2、径向柱塞式液压马达
径向柱塞式液压马达工作原理,当压力油经固定的配油轴4的窗口进入缸体内柱塞的底部时,柱塞向外伸出,紧紧顶住定子的内壁,由于定子与缸体存在一偏心距。在柱塞与定子接触处,定子对柱塞的反作用力为。力可分解为 和 两个分力。当作用在柱塞底部的油液压力为p,柱塞直径为d,力和之间的夹角为 X时,力对缸体产生一转矩,使缸体旋转。缸体再通过端面连接的传动轴向外输出转矩和转速。
以上分析的一个柱塞产生转矩的情况,由于在压油区作用有好几个柱塞,在这些柱塞上所产生的转矩都使缸体旋转,并输出转矩。径向柱塞液压马达多用于低速大转矩的情况下。
轴向柱塞泵除阀式配流外,其它形式原则上都可以作为液压马达用,即轴向柱塞泵和轴向柱塞马达是可逆的。轴向柱塞马达的工作原理为,配油盘和斜盘固定不动,马达轴与缸体相连接一起旋转。当压力油经配油盘的窗口进入缸体的柱塞孔时,柱塞在压力油作用下外伸,紧贴斜盘斜盘对柱塞产生一个法向反力p,此力可分解为轴向分力及和垂直分力Q。Q与柱塞上液压力相平衡,而Q则使柱塞对缸体中心产生一个转矩,带动马达轴逆时针方向旋转。轴向柱塞马达产生的瞬时总转矩是脉动的。若改变马达压力油输入方向,则马达轴按顺时针方向旋转。斜盘倾角a的改变、即排量的变化,不仅影响马达的转矩,而且影响它的转速和转向。斜盘倾角越大,产生转矩越大,转速越低。
齿轮马达在结构上为了适应正反转要求,进出油口相等、具有对称性、有单独外泄油口将轴承部分的泄漏油引出壳体外;为了减少启动,采用滚动轴承;为了减少转矩脉动齿轮液压马达的齿数比泵的齿数要多。
齿轮液压马达由干密封性差,容租效率较低,输入力不能过高,不能产生较大转矩。并且瞬间转速和转矩随着啮合点的位置变化而变化,因此齿轮液压马达仅适合于高速小转矩的场合。一般用于工程机械、农业机械以及对转矩均匀性要求不高的机械设备上
液压系统密封
在液压系统及其系统中,密封装置用来防止工作介质的泄漏及外界灰尘和异物的侵入。其中起密封作用的元件,即。外漏会造成工作介质的浪费,污染机器和环境,甚至引起机械操作失灵及设备人身事故。内漏会引起液压系统容积效率急剧下降,达不到所需要的工作压力,甚至不能进行工作。侵入系统中的微小灰尘颗粒,会引起或加剧液压元件摩擦副的磨损,进一步导致泄漏。
因此,密封件和密封装置是液压设备的一个重要组成部分。它的工作的可靠性和使用寿命,是衡量好坏的一个重要指标。除间隙密封外,都是利用密封件,使相邻两个偶合表面间的间隙控制在需要密封的液体能通过的最小间隙以下。在接触式密封中,分为自封式压紧型密封和自封式自紧型密封(即唇形密封)两种。
液压系统噪声
由于液压系统的振动和本身不可避免,而且近几年,随着液压技术向高速、高压和大功率方向的发展,液压系统的噪声也日趋严重,并且成为妨碍液压技术进一步发展的因素,声音超过70dB便成为噪声,使人听起来极不舒服,甚至使人烦躁不安,噪声作为污染已经日益受到人们的重视。因此研究和分析和振动的机理,从而减少与降低振动和噪声,并改善液压系统的性能,有着积极而深远的意义。
液压噪声源
在中,各元件或部件产生噪声和传递噪声程度不同,表1列出了液压元件或部件产生和传递噪声的名次。表1 液压元(部)件产生和传递噪声名次表元件与部件 名称液压泵溢流阀压力阀@节流阀方向阀液压缸油箱管路产生噪声的 名次传递噪声的 名次 注:表中@指的是溢流阀之外的压力控制阀 由于液压系统的噪声不只一种,因此最终表现出来的是其合成值,一般来讲,液压系统的噪声不外乎和流体噪声两种,下面予以分析说明。
液压常见问题分析
机械噪声是由于零件之间发生接触、撞击和振动而引起的。
① 回转体的不平衡
在液压系统中,、液压泵和液压马达都以高速回转,如果它们的转动部件不平衡,就会产生周期性的,引起转轴的弯曲振动,因而产生噪声,这种振动传到油箱和管路时,发出很大的声响,为了控制这种噪声,应对转子进行精密的动平衡实验,并注意尽量避开共振区。
② 电动机噪声
电动机噪声主要是指机械噪声、通风噪声和。机械噪声包括转子不平衡引起的低频噪声,轴承有缺陷和安装不合适而引起的高频噪声以及电动机支架与电动机之间共振所引起的噪声。控制的方法是,轴承与电动机壳体和电动机轴配合要适当,过盈量不可过大或过小,电动机两端盖上的孔应同轴;轴承润滑要良好。
③引起噪声
联轴器是液压泵与电动机之间的连接机构,如果电动机和液压泵不同轴以致联轴器偏斜,则将产生振动与噪声。因此在安装时,两者应保持在最小范围内。
液压常见问题分析
在液压系统中,流体噪声占相当大的比例。这种噪声是由于油液的流速、压力的突然变化以及气穴等原因引起的。
① 液压泵的流体噪声
液压泵的流体噪声主要是由泵的压力、流量的周期性变化以及气穴现象引起的。在液压泵的吸油和压油循环中,产生周期性的压力和流量变化,形成,从而引起液压振动,并经出口向整个系统传播。同时的管道和阀类将液压泵的压力反射,在回路中产生波动,使泵产生共振,发出噪声;另一方面,液压系统中(指开式回路)溶解了大约5%的空气。当系统中的压力因某种原因而低于空气分离压时,其中溶解于油中的气体就迅速地大量分离出来,形成气泡,这些气泡遇到高压便被压破,产生较强的。对于前者的控制办法,设计时尽量取小,齿数尽量取多,缺载槽的形状和尺寸要合理,柱塞泵的柱塞个数应为奇数,最好为7~9个,并在进、排油配流盘上对称开上三角槽,以防柱塞泵的困油。为防止空气混入,
液压降低噪声
为减少噪声,必须对噪声源进行实际调查,测量分析液压系统的声压级,进行频率分析,从而掌握噪声源的大小及频率特性,采取相应办法,具体列举如下:
① 使用低噪声电机;并使用弹性联轴器,以减少该环节引起的振动和噪声;
② 在电动机,液压泵和液压阀的安装面上应设置防振胶垫;
③ 尽量用液压集成块代替管道,以减少振动;
④ 用蓄能器和减少由压力脉动引起的振动,
蓄能器能吸收10 Hz以下的噪声,而高频噪声,用液压软管则十分有效;⑤ 用带有的隔声罩,将液压泵罩上也能有效地降低噪声;
⑥ 系统中应设置放气装置。
液压件的表面要求及加工
缸筒作为油缸、矿用单体支柱、、炮管等产品的主要部件,其加工质量的好坏直接影响整个产品的寿命和可靠性。缸筒加工要求高,其内表面粗糙度要求为Ra0.4~0.8&m,对同轴度、耐磨性要求严格。缸筒的基本特征是深孔加工,其加工一直困扰加工人员。
采用滚压加工,由于表面层留有表面残余压,有助于表面微小裂纹的封闭,阻碍侵蚀作用的扩展。从而提高表面抗腐蚀能力,并能延缓疲劳裂纹的产生或扩大,因而提高缸筒疲劳强度。通过滚压成型,滚压表面形成一层冷作硬化层,减少了磨削副接触表面的弹性和塑性变形,从而提高了缸筒内壁的耐磨性,同时避免了因磨削引起的烧伤。滚压后,表面粗糙度值的减小,可提高配合性质。
液压阀作为液压系统的控制枢纽,运动频繁,对各组成部分器件的精度要求、密封性、可靠性都要求非常高,国外大部分企业都采用滚压来提高精度配合。
液压滚压及加工
滚压加工是一种无切屑加工,在常温下利用金属的塑性变形,使工件表面的微观不辗平从而达到改变表层结构、、形状和尺寸的目的。因此这种方法可同时达到光整加工及强化两种目的,是磨削无法做到的。
无论用何种加工方法加工,
在零件表面总会留下微细的的刀痕,出现交错起伏的峰谷现象,
滚压加工原理:它是一种压力光整加工,是利用金属在常温状态的冷塑性特点,利用对工件表面施加一定的压力,使工件表层金属产生,填入到原始残留的低凹波谷中,而达到工件表面粗糙值降低。由于被滚压的表层,使表层组织冷硬化和晶粒变细,形成致密的纤维状,并形成残余应力层,硬度和强度提高,从而改善了工件表面的耐磨性、耐蚀性和配合性。滚压是一种无切削的塑性加工方法。 无技术安全、方便,能精确控制精度,几大优点:
1、提高表面粗糙度,粗糙度基本能达到Ra≤0.08&m左右。
2、修正圆度,椭圆度可≤0.01mm。
3、提高,使受力变形消除,硬度提高HV≥4°
4、加工后有残余应力层,提高疲劳强度提高30%。
5、提高配合质量,减少磨损,延长零件使用寿命,但零件的加工费用反而降低。
液压滚压刀
油缸是工程机械最主要部件,传统的加工方法是:拉削缸体——精镗缸体——磨削缸体。采用滚压方法 是:拉削缸体——精镗缸体——滚压缸体,更多技术可咨询:
工序是3部分,但时间上对比:磨削缸体1米大概在1-2天的时间,滚压缸体1米大概在10-30分钟的时间。投入对比:磨床或绗磨机(几万——几百万),滚压刀(1仟——几万)。液压设备的方式
滚压后,孔表面粗糙度由幢滚前Ra3.2~6.3&m减小为Ra0.4~0.8&m,孔的表面硬度提高约30%,缸筒内表面疲劳强度提高25%。油缸使用寿命若只考虑缸筒影响,提高2~3倍,镗削滚压工艺较磨削工艺效率提高3倍左右。以上数据说明,滚压工艺是高效的,能大大提高缸筒的表面质量。
油缸经过滚压后,表面没有锋利的微小刃口,长时间的运动摩擦也不会损伤密封圈或密封件,这点在液压行业特别重要。
液压液压冲击
在液压系统中,由于某种原因引起液体压力在某一瞬间突然急剧上升,而形成很高的压力峰值,这种现象称为液压冲击。
1、产生液压冲击的原因(1)阀门突然关闭引起液压冲击
如图2-20所示有一较大容腔(如液压缸、蓄能器等)和在另一端装有阀门K的管道相通。阀门开启时,
阀门突然关闭而产生液压冲击
管内液体流动。当阀门突然关闭时,从阀门处开始迅速将液体动能逐层转化为压力能,相应产生一从阀门向容腔推进的高压冲击波;此后又从容腔开始将液体压力能逐层转化为动能,液体反向流动;然后,再次将液体动能转化为压力能而形成一高压冲击波,如此反复地进行能量转化,在管道内形成压力震荡。由于液体内摩擦力和管道等的影响,振荡过程会逐渐衰渐而趋于稳定。
2)运动部件突然制动或换向时引起液压冲击
换向阀突然关闭液压缸的回油通道而使运动部件制动时,这一瞬间运动部件的动能会转化为封闭油液的压力能,压力急剧上升,出现液压冲击。
(3)某些液压元件动作失灵或不灵敏产生的液压冲击
当溢流阀在系统中做安全阀使用时,如果系统过载安全阀不能及时打开或根本打不开,也会导致系统管道压力急剧升高,产生液压冲击。
2、液压冲击的危害
(1)巨大的瞬时压力峰值使液压元件,尤其是遭受破坏。
(2)系统产生强烈震动及噪声,并使油温升高。
(3)使压力控制元件(如压力继电器、顺序阀等)产生误动作,造成及事故。
3、减小液压冲击的措施
(1)延长阀门关闭和运动部件换向制动时间
当阀门关闭和运动部件换向制动时间大于0.3s时,液压冲击就大大减小。为控制液压冲击可采用换向时间可调的换向阀。如采用带阻尼的电液换向阀可通过调节阻尼以及控制通过先导阀的压力和流量来减缓主换向阀阀芯的换向(关闭)速度,液动换向阀也与此类似。
(2)限制管道内液体的流速和运动部件速度
机床液压系统,常常将管道内液体的流速限制在5.0m/s以下,运动部件速度一般小于10m/min等。
(3)适当加大管道内径或采用橡胶软管
可减小压力冲击波在管道中的传播速度,同时加大管道内径也可降低液体的流速,相应瞬时压力峰值也会减小。
(4)在液压冲击源附近设置蓄能器
使压力冲击波往复一次的时间短于阀门关闭时间,而减小液压冲击
液压技术的特性适合各种机械和设备的自动化、高性能、大容量、体积小、重量轻等方面的要求。所以虽然它是一门比较新的技术分支,但是在主动 力的传递机构、辅机的操作机构或作业自动化控制机构等方面广泛应用。
液压空穴现象
在液压系统中,如果某处压力低于油液工作温度下的空气分离压时,油液中的空气就会分离出来而形成大量气泡;当压力进一步降低到油液工作温度下的饱和蒸汽压力时,油液会迅速汽化而产生大量气泡。这些气泡混杂在油液中,产生空穴,使原来充满管道或液压元件中的油液成为不连续状态,这种现象一般称为空穴现象。
空穴现象一般发生在阀口和液压泵的进油口处。油液流过阀口的狭窄通道时,液流速度增大,压力大幅度下降,就可能出现空穴现象。液压泵的安装高度过高,吸油管道内径过小,吸油阻力太大,或液压泵转速过高,吸油不充足等,均可能产生空穴现象。
液压系统中出现空穴现象后,气泡随油液流到高压区时,在高压作用下气泡会迅速破裂,周围液体质点以高速来填补这一空穴,液体质点间高速碰撞而形成局部液压冲击,使局部的压力和温度均急剧升高,产生强烈的振动和噪声。
在气泡凝聚处附近的管壁和元件表面,因长期承受液压冲击及高温作用,以及油液中逸出气体的较强腐蚀作用,使管壁和元件表面金属颗粒被剥落,这种因空穴现象而产生的表面腐蚀称为气蚀。
为了防止产生空穴现象和气蚀,一般可采取下列措施:
1、减小流径小孔和间隙处的,一般希望小孔和间隙前后的压力比p1/p2&3.5。
2、正确确定液压泵吸油管内径,对管内液体的流速加以限制,降低液压泵的吸油高度,尽量减小吸油管路中的,管接头良好密封,对于高压泵可采用辅助泵供油。
3、整个系统管路应尽可能直,避免急弯和局部窄缝等。
4、提高元件抗气蚀能力。
章宏甲,黄谊.液压传动.北京:机械工业出版社,1996
常同立.液压控制系统.北京:清华大学出版社,2014
李洪人.液压控制系统.北京:国防工业出版社,1991
本词条认证专家为
教授、博导审核
清除历史记录关闭}

我要回帖

更多关于 液压系统原理图详解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信