华为MATE9能否映射到别克昂科威映射四驱豪华版上

简析IPv6技术在物联网中的应用_标签_中国百科网
简析IPv6技术在物联网中的应用
     物联网,英文名称叫‘Internet of things’(简称IOT),也称为传感网、泛在网等。通俗地讲,物联网就是‘物物相连的互联网’。即将各种信息传感通过互联网结合起来而形成的一个巨大网络。其中包含了两层意思:第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;第二,其用户端不仅仅是个人,还包括任何物品,终端可能很复杂,支持大量功能.也可能很简单.功能单一且无法加载很多复杂的处理算法。整个物联网的概念涵盖了从终端到网络、从数据采集处理到智能控制、从应用到服务、从人到物的方方面面,涉及众多的技术。从长远来看,物联网很有希望成为一个超越目前互联网产业规模的新兴产业,国际相关机构预测未来其规模将超过现有互联网规模的30倍以上。
物联网的网络困境
物联网丰富的应用和庞大的节点规模既带来了商业上的巨大潜力,同时也带来了技术上的挑战。首先,物联网由众多的节点连接构成,无论是采用自组织方式,还是采用现有的公众网进行连接,这些节点之间的通信必然牵涉到寻址问题。目前物联网的寻址系统可以采用两种方式.一种方式是采用基于E.164电话号码编址的寻址方式,但由于目前大多数物联网应用的网络通信协议都采用TCP/IP协议,电话号码编址的方式必然需要对电话号码与IP地址进行转换。这提高了技术实现的难度,并增加了成本。同时由于E.164编址体系本身的地址空间较小。也无法满足大量节点的地址需求。另一种方式是直接采用IPv4地址的寻址体系来进行物联网节点的寻址.随着互联网本身的快速发展。IPv4的地址已经日渐匮乏。从目前的地址消耗速度来看。IPv4地址空间已经很难再满足物联网对网络地址的庞大需求。从另一方面来看,物联网对海量地址的需求.也对地址分配方式提出了要求.海量地址的分配无法使用手工分配,使用传统DHCP的分配方式对网络中的DHCP服务器也提出了极高的性能和可靠性要求,可能造成DHCP服务器性能不足,成为网络应用的一个瓶颈。其次,目前互联网的移动性不足也造成了物联网移动能力的瓶颈。IPv4协议在设计之初并没有充分考虑到节点移动性带来的路由问题.即当一个节点离开了它原有的网络,如何再保证这个节点访问可达性的问题。由于IP网络路由的聚合特性,在网络路由器中路由条目都是按子网来进行汇聚的.当节点离开原有网络,其原来的IP地址离开了该子网,而节点移动到目的子网后,网络路由器设备的路由表中并没有该节点的路由信息(为了不破坏全网路由的汇聚,也不允许目的子网中存在移动节点的路由),会导致外部节点无法找到移动后的节点。因此如何支持节点的移动能力是需要通过特殊机制实现的.在IPv4中IETF提出了MIPv4(移动IP)的机制来支持节点的移动。但这样的机制引入了著名的三角路由问题。对于少量节点的移动,该问题引起的网络资源损耗较小.而对于大量节点的移动,特别是物联网中特有的节点群移动和层移动.会导致网络资源被迅速耗尽,使网络处于瘫痪的状态。
再次,网络质量保证也是物联网发展过程中必须解决的问题。目前IPv4网络中实现QoS有两种技术,其一采用资源预留(interserv)的方式,利用RsVP等协议为数据流保留一定的网络资源.在数据包传送过程中保证其传输的质量;其二采用Diffserv技术,由IP包自身携带优先级标记.网络设备根据这些优先级标记来决定包的转发优先策略。目前IPv4网络中服务质量的划分基本是从流的类型出发.使用Diffserv来实现端到端服务质量保证,例如视频业务有低丢包、时延、抖动的要求,就给它分配较高的服务质量等级:数据业务对丢包、时延、抖动不敏感,就分配较低的服务质量等级,这样的分配方式仅考虑了业务的网络侧质量需求.没有考虑业务的应用侧的质量需求,例如,一个普通视频业务对服务质量的需求可能比一个基于物联网传感的手术应用对服务质量的需求要低。因此物联网中的服务质量保障必须与具体的应用相结合。
最后,物联网节点的安全性和可靠性也需要重新考虑。由于物联网节点限于成本约束很多都是基于简单硬件的,不可能处理复杂的应用层加密算法,同时单节点的可靠性也不可能做得很高,其可靠性主要还是依靠多节点冗余来保证。因此,靠传统的应用层加密技术和网络冗余技术很难满足物联网的需求。
IPv6的物联网技术解决方案
1.IPv6地址技术
IPv6拥有巨大的地址空间,同时128 bit的IPv6的地址被划分成两部分,即地址前缀和接口地址。与IPv4地址划分不同的是,IPv6地址的划分严格按照地址的位数来进行,而不采用IPv4中的子网掩码来区分网络号和主机号。IPv6地址的前64位被定义为地址前缀。地址前缀用来表示该地址所属的子网络,即地址前缀用来在整个IPv6网中进行路由。而地址的后64位被定义为接口地址,接口地址用来在子网络中标识节点。在物联网应用中可以使用IPv6地址中的接口地址来标识节点。在同一子网络下。可以标识264个节点。这个标识空间约有185亿亿个地址空间.这样的地址空间完全可以满足节点标识的需要。
另一方面,IPv6采用了无状态地址分配的方案来解决高效率海量地址分配的问题。其基本思想是网络侧不管理IPv6地址的状态,包括节点应该使用什么样的地址、地址的有效期有多长.且基本不参与地址的分配过程。节点设备连接到网络中后。将自动选择接口地址(通过算法生成IPv6地址的后64位),并加上FE80的前缀地址,作为节点的本地链路地址,本地链路地址只在节点与邻居之间的通信中有效,路由器设备将不路由以该地址为源地址的数据包。在生成本地链路地址后,节点将进行DAD(地址冲突检测),检测该接El地址是否有邻居节点已经使用,如果节点发现地址冲突,则无状态地址分配过程将终止,节点将等待手工配置IPv6地址。如果在检测定时器超时后仍没有发现地址冲突,则节点认为该接13地址可以使用,此时终端将发送路由器前缀通告请求.寻找网络中的路由设备。当网络中配置的路由设备接收到该请求.则将发送地址前缀通告响应.将节点应该配置的IPv6地址前64位的地址前缀通告给网络节点.网络节点将地址前缀与接口地址组合,构成节点自身的全球IPv6地址。
采用无状态地址分配之后,网络侧不再需要保存节点的地址状态,维护地址的更新周期,这大大简化了地址分配的过程.网络可以以很低的资源消耗来达到海量地址分配的目的。
2.IPv6的移动性技术
IPv6协议设计之初就充分考虑了对移动性的支持。针对移动IPv4网络中的三角路由问题.移动IPv6提出了相应的解决方案。
首先.从终端角度IPv6提出了IP地址绑定缓冲的概念,即IPv6协议栈在转发数据包之前需要查询IPv6数据包目的地址的绑定地址。如果查询到绑定缓冲中目的IPv6地址存在绑定的转交地址,则直接使用这个转交地址为数据包的目的地址。这样发送的数据流量就不会再经过移动节点的家乡代理,而直接转发到移动节点本身。
其次。MIPv6引入了探测节点移动的特殊方法,即某一区域的接入路由器以一定时间进行路由器接口的前缀地址通告.当移动节点发现路由器前缀通告发生变化,则表明节点已经移动到新的接人区域。与此同时根据移动节点获得的通告,节点又可以生成新的转交地址,并将其注册到家乡代理上。
MIPv6的数据流量可以直接发送到移动节点,而MIPv4流量必须经过家乡代理的转发。在物联网应用中。传感器有可能密集地部署在一个移动物体上。例如为了监控地铁的运行参数等,需要在地铁车厢内部署许多传感器.从整体上来看,地铁的移动就等同于一群传感器的移动,在移动过程中必然发生传感器的群体切换,在MIPv4的情况下,每个传感器都需要建立到家乡代理的隧道连接,这样对网络资源的消耗非常大,很容易导致网络资源耗尽而瘫痪。在MIPv6的网络中,传感器进行群切换时只需要向家乡代理注册。之后的通信完全由传感器和数据采集的设备之间直接进行,这样就可以使网络资源消耗的压力大大下降。因此。在大规模部署物联网应用,特别是移动物联网应用时,MIPv6是一项关键性的技术。
3.IPv6的服务质量技术
在网络服务质量保障方面,IPv6在其数据包结构中定义了流量类别字段和流标签字段。流量类别字段有8位,和IPv4的服务类型(ToS)字段功能相同,用于对报文的业务类别进行标识;流标签字段有20位,用于标识属于同一业务流的包。流标签和源、目的地址一起.惟一标识了一个业务流。同一个流中的所有包具有相同的流标签,以便对有同样QoS要求的流进行快速、相同的处理。
目前,IPv6的流标签定义还未完善。但从其定义的规范框架来看,IPv6流标签提出的支持服务质量保证的最低要求是标记流,即给流打标签。流标签应该由流的发起者信源节点赋予一个流,同时要求在通信的路径上的节点都能够识别该流的标签.并根据流标签来调度流的转发优先级算法。这样的定义可以使物联网节点上的特定应用有更大的调整自身数据流的自由度,节点可以只在必要的时候选择符合应用需要的服务质量等级.并为该数据流打上一致的标记。在重要数据转发完成后。即使通信没有结束节点也可以释放该流标记,这样的机制再结合动态服务质量申请和认证、计费的机制,就可以做到使网络按应用的需要来分配服务质量。同时。为了防止节点在释放流标签后又误用该流标签.造成计费上的问题。信源节点必须保证在120 s内不再使用释放了的流标签。
在物联网应用中普遍存在节点数量多.通信流量突发性强的特点。与IPv4相比,由于IPv6的流标签有20 bit,足够标记大量节点的数据流。同时与IPv4中通过五元组(源、目的IP地址,源、目的端口、协议号)不同,IPv6可以在一个通信过程中(五元组没有变化),只在必要的时候数据包才携带流标签,即在节点发送重要数据时,动态提高应用的服务质量等级,做到对服务质量的精细化控制。
当然IPv6的QoS特性并不完善,由于使用的流标签位于IPv6包头,容易被伪造,产生服务盗用的安全问题。因此.在IPv6中流标签的应用需要开发相应的认证加密机制。同时为了避免流标签使用过程中发生冲突,还要增加源节点的流标签使用控制的机制,保证在流标签使用过程中不会被误用。
4.IPv6的安全性与可靠性技术
首先.在物联网的安全保障方面。由于物联网应用中节点部署的方式比较复杂.节点可能通过有线方式或无线方式连接到网络.因此节点的安全保障的情况也比较复杂。在使用IPv4的场景中一个黑客可能通过在网络中扫描主机IPv4地址的方式来发现节点,并寻找相应的漏洞。而在IPv6场景中.由于同一个子网支持的节点数量极大(达到百亿亿数量级),黑客通过扫描的方式找到主机难度大大增加。在口基础协议栈的设计方面,矾6将IPsec协议嵌入到基础的协议栈中。通信的两端可以启用IPSec加密通信的信息和通信的过程。网络中的黑客将不能采用中间人攻击的方法对通信过程进行破坏或劫持。同时,黑客即使截取了节点的通信数据包,也会因为无法解码而不能窃取通信节点的信息。
同时,由于IP地址的分段设计,将用户信息与网络信息分离.使用户在网络中的实时定位很容易,这也保证了在网络中可以对黑客行为进行实时的监控,提升了网络的监控能力。
在另一个方面,物联网应用中由于成本限制,节点通常比较简单,节点的可靠性也不可能做得太高,因此,物联网的可靠性要靠节点之间的互相冗余来实现。又因为节点不可能实现较复杂的冗余算法,因此一种较理想的冗余实现方式是采用网络侧的任播技术来实现节点之间的冗余。采用IPv6的任播技术后.多个节点采用相同的IPv6任播地址(任播地址在IPv6中有特殊定义)。在通信过程中发往任播地址的数据包将被发往由该地址标识的‘最近’的一个网络接口,其中‘最近’的含义指的是在路由器中该节点的路由矢量计算值最小的节点。当一个‘最近’节点发生故障时.网络侧的路由设备将会发现该节点的路由矢量不再是‘最近’的.从而会将后续的通信流量转发到其他的节点。这样物联网的节点之间就自动实现了冗余保护的功能。而节点上基本不需要增加算法,只需要应答路由设备的路由查询,并返回简单信息给路由设备即可。
IPv6具有很多适合物联网大规模应用的特性,但目前也存在一些技术问题需要解决,例如,无状态地址分配中的安全性问题.移动IPv6中的绑定缓冲安全更新问题,流标签的安全防护,全球任播技术的研究等。虽然IPv6还有众多的技术细节需要完善,但从整体来看,使用IPv6不仅能够满足物联网的地址需求,同时还能满足物联网对节点移动性、节点冗余、基于流的服务质量保障的需求,很有希望成为物联网应用的基础网络技术。
收录时间:日 12:48:04 来源:一卡通世界 作者:匿名
上一篇: &(&&)
创建分享人
喜欢此文章的还喜欢
Copyright by ;All rights reserved. 联系:QQ:小木虫 --- 600万学术达人喜爱的学术科研平台
IPv4向IPv6的过渡策略作者: 收集于网络
移动网络向移动IPv6的过渡过程中,IPv4的网络和业务将会在一段相当长的时间里与IPv6共存,许多业务仍然要在IPv4网络上运行很长时间,特别是IPv6不可能马上提供全球的连接,很多IPv6的通信不得不在IPv4网路上传输,因此过渡机制非常重要,需要业界的特别关注和重视。 IPv4向IPv6过渡的过程是渐进的,可控制的,过渡时期会相当长,而且网络/终端设备需要同时支持IPv4和IPv6,最终的目标是使所有的业务功能都运行在IPv6的平台上。 1、IPv4到IPv6的过渡方法 从IPv4到IPv6的过渡方法有三种:网络元素/终端的双协议栈、网络中的隧道技术以及翻译机制。其中双协议栈和隧道技术是主要的方法,而翻译机制由于效率比较低,只在不同IP版本的元素之间进行通信时才采用。 (1)网络元素和移动终端上的IPv4/IPv6双协议栈双协议栈是非常重要的过渡机制,从网络方面来看,网络设备(如GGSN)实现双协议栈对于实现IPv4和IPv6的接入点并完成IPv6-in-IPv4的隧道都是至关重要的,另外运营商IP网络和公众因特网边缘的边际路由器也应该是双栈路由器。从移动终端来看,需要通过双协议栈来访问IPv4和IPv6的业务而不需要网络上的翻译机制。 (2)隧道技术 如将IPv6的数据包封装在IPv4的数据包中并在隧道的另一端解除封装,这也是一种非常重要的过渡方法,隧道技术要求在封装和解除封装的节点上都有IPv4/IPv6双协议栈的功能。隧道技术又分为自动和人工配置两种,人工配置的隧道技术是在隧道的终点人工配置到某个特定的IPv4地址;对于自动隧道技术来说,封装是自动在进行封装的路由器/主机上完成的,隧道终点的IPv4地址被包含在目的地址为IPv6地址的数据包中,如“6to4”隧道技术。 (3)网络上的IPv4-IPv6协议翻译器:翻译器是纯IPv4主机和纯IPv6主机之间的中间件,使两种主机不需要修改任何配置就可以实现彼此之间的直接通信,翻译器的使用对于移动终端来说是透明的,头标转换是一种重要的翻译机制,通过这种方法IPv6数据包的头标被转换为IPv4数据包的头标,或者反过来,IPv4转换为IPv6,有必要的时候对校验进行调整或重新计算,NAT/PT(Network Address Translator/Protocol Translator)就是采用这种机制的一种方法。 采用地址/协议翻译器需要转换IP数据包的头标,带来的问题是破坏了端到端的服务(如端到端的IPSec),而且NAT/PT可能成为网络性能的瓶颈,有可能限制业务提供平台的容量和扩展性。 使用网络中的地址/协议翻译器还是采用其它过渡方法主要由网络运营商决定,一般来说,只有当两个通信节点的IP版本不同时才建议采用翻译器。 2、IPv4到IPv6的过渡阶段 图1中给出了GPRS/WCDMA网络过渡到IPv6的一个简单描述,同样的原则也适用于其它网络类型。 从图1中可以看出,开始的时候是只支持IPv4的GPRS/WCDMA网络,所有连接到因特网上的终端都是纯IPv4的设备,NAT被用来节约公共的IP地址。这些网络向IPv6过渡的过程可以分为三个阶段:
图1 IPv4过渡到IPv6的各个阶段
(1)第一阶段:网络中有着一个个单独的IPv6孤岛,它们之间的连接是通过在IPv4网络上自动或人工配置“IPv6 in IPv4”的隧道来实现的。在这个阶段,向移动用户提供的IPv6业务绝大多数是由运营商的内网络(Intranet)提供的,其它的一些IPv6业务通过在IPv4网络上的配置/自动隧道来实现,传统的IPv4业务可以提供有IPv4或者双协议栈的终端。在运营商的网络上仍然有NAT,通过分配临时地址来处理公共IPv4地址匮乏的问题。运营商的网络上还可以安装翻译器(如NAT-PT)来完成IPv4与IPv6协议之间的翻译转换。 (2)第二阶段:这一阶段IPv6已经广泛部署并且有了大量在IPv6平台上实现的业务,但是由于IPv6网络还不能达到完全连接,有时仍然需要IPv4网上的隧道技术来与IPv6节点连接通信。 这个阶段由于所有新业务都在IPv6平台上实现,从而加速了IPv6的部署。从IPv6的发展趋势来看,移动网络将率先进入这一发展阶段。这时大量传统的IPv4业务仍然存在,很多移动节点上都安装了IPv4/IPv6双协议栈。 (3)第三阶段:IPv6已经获得主导地位,IPv6网络已经实现了全球连接而且所有的业务都在IPv6平台上运行,这时候将不再需要双协议栈功能或者地址/协议的翻译机制,这使得网络结构更加简单,网络维护也更加容易。 IPv6使得网络中的每个节点都有一个独一无二的、全球可路由到的地址。 3、IPv4向IPv6过渡的网络模型 3.1 网络模型 图2简单地显示出移动终端与GPRS核心网络的连接,移动终端与GGSN接入点(AP)之间所建立的连接称为分组数据协议(PDP)上下文,移动终端通过激活PDP上下文来获取其IP地址,图2中显示了两种不同的移动终端连接到GGSN的两个不同的接入点上的情况。GGSN中的AP1是原生的IPv6,始终连接到IPv6环境中。AP2提供通过IPv4网络隧道的IPv6连接,这一连接可以是“6to4”的、也可以是“4to6”的。AP3是原生的IPv4,提供到纯IPv4服务/主机的连接。
图2 到GGSN的IPv4和IPv6接入点的连接&
图3是过渡期网络模型分析的简单图解,只显示了移动终端和GPRS核心网。使用运营商本地的IPv4和IPv6业务(网内业务)没有必要采用公用IPv4地址或全球IPv6地址(站点本地IPv6地址就足够了)。 当用户离开运营商网络时,通信流要通过边缘路由器和防火墙,在这种情况下,需要公用IPv4地址和全球IPv6地址。获取全球IPv6地址不是问题,但是运营商的公用IPv4地址非常有限,因此需要提供临时的IPv4地址的机制,如NAT。 当通过IPv4网络来连接某个IPv6主机时需要采用隧道技术,隧道的起点可以是GGSN、边缘路由器、或者移动终端,隧道的终点可以是主机或者IPv6网络边缘的路由器(如图3中的路由器1),如果隧道在主机之前终结则由该路由器解开封装。&
图3 过渡期的网络模型
图4显示了双栈移动终端在某个仅支持IPv4的外访网络上漫游,而用户希望连接某个IPv6主机的情况。链路层的移动性是指移动终端可以连接到其家乡GGSN并获得到IPv6网络的接入,外访网络上的SGSN通过Inter—PLMN骨干网络的GTP隧道,将移动终端连接到家乡的GGSN上,Inter-PLMN网络连接运营商的GPRS核心网和相关得有漫游协议的运营商网络。
图4 链路层的移动性——MT从外访网络通过PLMN骨干网之间的网络连接到家乡网络GGSN和某个IPv6主机
3.2 连接的不同组合方式 移动网络、移动终端、连接到的不同主机的IP版本都存在两种可能性,它们之间的连接会出现不同的组合方式。一条基本规则是:如果两个通信的IP节点的IP版本不同,网络中的某些节点就需要协议翻译。网络元素和移动终端采用IPv4/IPv6双协议栈是一个确保通信节点能用同一种IP版本通信的很好的解决方案。 在过渡期将会有三种不同的网络业务类型: (1)传统的IPv4业务通过全球连接的IPv4网络来传输:由于缺乏公用IPv4地址,必须采用私有IPv4地址和NAT。 (2)IPv6网络上的IPv6业务:这种情况下原生的IPv6路由即可完成,不需要IPv4网络上的隧道或者协议翻译。 (3)IPv4网络上的IPv6业务:通信的IPv6节点/网络通过IPv4网络采用隧道技术实现连接,有可能使用协议翻译。 使用以上三种网络业务的移动终端类型可以是纯IPv4的终端(常见的第一代GPRS/WCDMA终端)、双IPv4/IPv6协议栈的终端、或纯IPv6的终端(正在研发阶段),同样与之通信的对等主机也可以是双协议栈、纯IPv4或者纯IPv6的。 3.3 过渡方式 (1)纯IPv4终端 纯IPv4终端主要是第一代的GPRS终端,提供给纯IPv4终端的是纯IPv4业务,在很多情况下没有足够的公用IPv4地址来分配给这些移动终端,因此通常情况下移动终端分配到的是私有IPv4地址。如果一个拥有私有IPv4地址的移动终端要通过公用的IPv4网络连接到某个主机上,网络中必须有NAT。 图5描述了三种情况: ◆移动终端连接到同一网内的某个主机上,这时仅用私有IPv4地址就足够了; ◆移动终端连接到公共因特网上的某个主机,移动终端将从运营商的地址空间中分配到一个公用IPv4地址并通过全球的IPv4路由来实现连接,由于公用IPv4地址池中的地址有限,图5中的b)情形很少发生。 ◆移动终端有一个私有的IPv4地址,NAT分配一个临时的公用IPv4地址给它,移动终端通过这个临时的地址实现连接。
来自移动节点发送到主机的IPv6数据包可以通过IPv4网络上的隧道技术来传输,或者可以直接通过IPv6网络传输。但在很多情况下不能通过IPv6网络来发送,因为还没有直接的连接。 发送到主机的数据包采用“6to4”类型的主机地址,如果数据包的所有选路都是通过IPv6网络就不需要“6to4”隧道技术,否则在边际路由器和路由器1之间将采用自动“6to4”隧道技术。 如图8所示,双协议栈的移动终端连接到纯IPv4的主机(例如IPv4的公司接入网络上的邮件服务器)上,双协议栈的移动终端在IPv4模式下工作,由于公用IPv4地址的缺乏而被分配到一个私有的IPv4地址,需要用NAT来为移动终端提供临时的公用IPv4地址。
图8 双协议栈移动终端连接到纯IPv6主机上
(3)纯IPv6终端 纯IPv6移动终端的通信与双协议栈终端的主要区别在于:移动终端与纯IPv4主机之间的通信需要在网络上有翻译器(如NAT-PT)。 如图9所示,纯IPv6移动节点从GGSN(GGSN的AP类型是IPv6)获得了全球的IPv6地址,由于纯IPv6移动终端连接到的纯IPv4主机有公用IPv4地址,因此需要NAT-PT和其它的翻译机制来实现IPv6-IPv4协议和地址之间的翻译,边际路由器是双协议栈的路由器,既有全球的IPv4地址也有IPv6地址。
图9 纯IPv6移动终端使用翻译器连接到纯IPv4主机
在这种情况下,双协议栈终端能工作得更好,因为双协议栈的终端不需要NAT-PT。 4、应用和服务 IPv6对有些应用来说至关重要,如VoIP、WAP、推送和其它需要“永远在线”支持(如实时连接)的业务。 由于过渡策略是不依赖于应用的,也就是说两者是分离的,因此建议所有的新业务都在IPv6平台上实现,实际上所有的业务在可能的条件下都可以移植到IPv6平台上。
本栏目更多导读:
北京学而思教育科技有限公司 地址:北京市海淀区北三环甲18号中鼎大厦A座1层102室 电话:010-IPv4/IPv6过渡技术和方案分析
IPv4/IPv6过渡技术和方案分析
发布: | 作者:—— | 来源: C114中国通信网 | 查看:313次 | 用户关注:
摘要 简要介绍了IPv4向IPv6过渡的主要技术,并针对我国IPv6发展情况对网络过渡方案进行了分析。 关键词 IPv4 IPv6 过渡方案 O、前言   互联网的成功发展给人民的生活带来了重大的变化,互联网的影响已经渗透到社会的各个方面。随着互联网应用的飞速增长,当前的互联网协议IPv4的缺点已经越来越突出。IPv6作为IETF确定的下一代互联网协议,有望彻底解决IPv4存在的问题,因此受到人们
摘要 简要介绍了IPv4向IPv6过渡的主要技术,并针对我国IPv6发展情况对网络过渡方案进行了分析。 关键词 IPv4 IPv6 过渡方案 O、前言   互联网的成功发展给人民的生活带来了重大的变化,互联网的影响已经渗透到社会的各个方面。随着互联网应用的飞速增长,当前的互联网协议IPv4的缺点已经越来越突出。IPv6作为IETF确定的下一代互联网协议,有望彻底解决IPv4存在的问题,因此受到人们的关注。IETF从1992年就开始着手研究IPv6。目前IPv6的相关标准和产品已经逐渐成熟。随着3G、NGN等潜在业务需求的增长,IPv6的市场前景日趋看好。2003年,我国启动了基于IPv6的“下一代互联网示范网CNGI工程”,更使得IPv6成为了国内业界关注的焦点。   尽管目前我国已经开始了较大规模的IPv6网络建设,但IPv6业务的发展还将是个漫长的过程,IPv4向IPv6的过渡需要相当长的时间才能完成。在IPv6完全取代IPv4之前,两种协议不可避免地有很长一段共存期。因此,有必要制定相应的方案保证IPv4和IPv6的互操作性和平滑过渡。   在这方面,IETF的IPv6过渡工作组已经提出了许多建议方案,并定义了多种IPv4/IPv6过渡技术,以实现IPv4向IPv6的过渡。这些技术各有不同的特点和适用场合。本文将对主要的过渡技术进行介绍,并针对我国目前互联网现状对可采用的网络过渡方案及相应过渡技术的选择进行分析。 1、IPv4/IPv6过渡技术简介   1.1 综述   IPv4/IPv6过渡技术是用来在IPv4向IPv6演进的过渡期内,保证业务共存和互操作的。目前的各种IPv4/IPv6过渡技术,从功能用途上可以分成两类:IPv4/IPv6业务共存技术、IPv4/IPv6互操作技术。   a)IPv4/IPv6业务共存技术用来保证这两种网络协议可以在公共互联网中共同工作,在IPv6发展过程中这些技术可以帮助IPv6业务在现有的IPv4网络基础架构上工作。主要的IPv4/IPv6业务共存技术又可分为双栈技术和隧道技术两类。双栈技术通过节点对IPv4和IPv6双协议栈的支持,支持两种业务的共存。隧道技术通过在IPv4网络中部署隧道,实现在IPv4网络上对IPv6业务的承载,保证业务的共存和过渡,已定义的隧道技术种类很多,主要包括手工配置隧道、兼容地址自动配置隧道、6 over 4、6 to 4、MPLS隧道、ISATAP、隧道代理等技术。   b)IPv4/IPv6互操作技术通过对数据包的转换实现在网络过渡期中IPv4节点和IPv6节点之间的相互访问。目前主要的技术包括SIIT、NAT-PT、BIS、BIA、DSTM等。   下面将对一些典型的、比较成熟的IPv6过渡技术进行简要介绍。   1.2 双栈技术   双栈是指同时支持IPv4协议栈和IPv6协议栈。双栈节点同时支持与IPv4和IPv6节点的通信,当和IPv4节点通信时需要采用IPv4协议栈,当和IPv6节点通信时需要采用IPv6协议栈。双栈节点访问业务时支持通过DNS解析结果选择通信协议栈。即当域名解析结果返回IPv4或IPv6地址时,节点可用相应的协议栈与之通信。   双栈方式是一种比较直观的解决IPv4/IPv6共存问题的方式,但只有当通信双方数据包通路上的所有节点设备(路由器等)都支持双栈技术后,这种方式才能充分发挥其作用。   1.3 手工配置隧道   隧道技术是一种利用现有IPv4网络传送IPv6数据包的方法,通过将IPv6数据包封装在IPv4数据包中,实现在IPv4网络中的数据传送。隧道的起点和终点设备都同时支持IPv4和IPv6协议的节点,隧道起点将要经过隧道传送的IPv6数据包封装在IPv4包中发给隧道终点,隧道终点将IPv4封装去掉,取出IPv6数据包。IPv4封装IPv6数据包方式如图1所示。
图1 IPv4封装IPv6数据包方式   在实际实现中,隧道封装时还涉及到对MTU、TTL等的处理。   隧道技术在设置IPv4报头的目的IP地址时分为手动和自动两种方式,不同的目的地址设置方式也成为几种隧道技术的重要区别。这里介绍的手工配置隧道技术,是指通过人工方式预先设置隧道终点IPv4地址的方式。每条隧道的终点IPv4地址都是隧道起点从人工配置信息中获得的。手工配置隧道实现简单,但每条隧道都要人工管理,大量使用时管理难度很大。   1.4 兼容地址自动配置隧道   这种技术通过使用IPv4兼容地址,使得隧道起点可以从IPv6报头中自动获得隧道终点的IPv4地址,自动完成隧道的配置。   IPv4兼容地址是一类专门指定给这种自动配置隧道方式使用的IPv6地址,该地址是由96位全为零的前缀和后32位IPv4地址组成的。可以看出这种IPv6地址可以方便隧道起点设备通过该地址取得内嵌的IPv4地址。   当一个连接在IPv4网络中的IPv6节点想要使用兼容地址自动配置隧道方式与另一个节点进行IPv6通信时,只要知道对方节点的IPv4兼容地址,就能自动建立与对方节点的隧道,通过隧道实现IPv6通信。隧道入口节点从采用兼容地址格式的目的地址中获取后32位IPv4地址,使用该IPv4地址作为隧道终点地址建立隧道。   这种方式虽然比较简单、直观地实现了隧道的自动配置,但这种方式扩展性差,每个主机需要1个IPv4地址,无法发挥IPv6地址空间的优势。   1.5 6 to 4隧道   6 to 4隧道也支持隧道的自动建立。6 to 4隧道支持IPv6子网通过IPv4网络中的隧道相连。6 to 4方式使用IANA指定的专用地址前缀:2002::/16,其地址格式如图2所示。 图2 6 to 4方式地址格式   在2002::/16前缀后是32位的IPv4地址。该地址是隧道端点的IPv4地址。地址格式中后80位是用户自己分配的,一个IPv6子网只要有1个公开的IPv4地址就可以用其构建自己的6 to 4格式地址,80位的地址空间能满足任何大容量子网的需求。子网中1台设备作为6 to 4网关与IPv4网络相连,使用公开的IPv4地址。子网中的IPv6用户可以使用6 to 4地址通过6 to 4网关与其他6 to 4子网通信。两个子网的网关之间通过自动建立的IPv4隧道连接。使用6 to 4地址的用户如果需要与远端的IPv6公共网络的用户(使用非6 to 4地址)通信,可以通过IPv6公共网络中的6 to 4中继路由器实现。   6 to 4技术使用方便,IPv4地址消耗很少,IPv6子网可以不申请独立的IPv6地址就可以使用6 to 4地址通信,具有较好的灵活性。   1.6 NAT-PT   前面已经提到,网络地址转换—协议转换(NAT-PT)属于IPv4/IPv6互操作技术,可以实现纯IPv6节点和纯IPv4节点之间的互通。NAT-PT使用网关设备连接IPv6和IPv4网络。当IPv4和IPv6节点互相访问时,NAT-PT网关实现两种协议的转换翻译和地址的映射。NAT-PT网关在工作时,将维护一个IPv4地址池。与传统NAT方式一样,NAT-PT网关支持为IPv6网络中的节点动态分配IPv4地址。维护地址映射关系,并且完成IPv4协议和IPv6协议的转换。   为了保证NAT-PT的正确运行,NAT-PT网关需要和DNS应用网关结合在一起,保证正确解析跨网络的地址解析请求。   NAT-PT技术可以较好地解决IPv4和IPv6的互通问题,使得大部分应用层协议不需要修改就能够实现互通。但对于需要在应用层协议的控制平面传送IP层信息的应用,不能够通过基本NAT-PT设备互通。必须结合相应的应用层网关(ALG)来实现这些应用层协议的转换。   1.7 其他IPv4/IPv6过渡技术   除了前面介绍的几种技术外,还有许多其他的IPv4/IPv6过渡技术,限于篇幅本文不再详细描述,下文只对主要的技术做一简述。   1.7.1 6 over 4隧道   6 over 4是一种自动隧道技术,使用6 over 4的IPv6主机将IPv4组播域作为虚拟的链路层,通过IPv4的组播方式实现互联。   1.7.2 ISATAP   ISATAP(Intra-Site Automatic Funnel Addressing Protocol)支持IPv4子网中的IPv6主机通过自动隧道接入到IPv6路由器。ISATAP使用内嵌IPv4地址的特定地址格式:64位的前缀+32位串00005EFE+32位的IPv4地址。ISATAP地址可以使用标准的公开IPv6地址前缀,IPv4可以是公开地址也可以是保留地址。ISATAP支持保留IPv4地址,可以使经过NAT设备的IPv4子网中的IPv6主机实现连接。   1.7.3 隧道代理   隧道代理(Tunnel Broker)自动代理IPv4网中IPv6用户的隧道配置请求,简化隧道配置。隧道代理体系中,用到隧道代理和隧道服务器两种设备。需要IPv6通信的用户访问隧道代理,隧道代理响应用户的请求,进行隧道建立和拆除的配置、DNS域名的注册和注销等工作。隧道服务器是双栈设备,与IPv6和IPv4网络相连,它接受隧道代理的配置指令。完成用户之间隧道的创建和拆除等操作。   1.7.4 MPLS隧道   MPLS隧道方式通过在IPv4网中的MPLS LSP连接IPv6网络。MPLS隧道有多种实现方式,比较常见的有6PE方式。6PE方式对用户端的CE设备没有要求,PE设备是双栈设备,支持IPv4网中MPLS隧道的建立。   1.7.5 应用转换技术   在IPv4/IPv6互操作技术中,除了NAT-PT这种网络转换技术外,还有一些应用层的转换技术(包括BIA、SOCK64等),这些技术通过对用户系统应用层进行的修改,在应用层进行IPv6和IPv4请求的转换,实现IPv4和IPv6应用的互操作。 2、过渡技术分析比较   IPv4/IPv6过渡技术种类较多,但各有特点,适用场合不同。下文将对各种技术进行分析比较。   2.1 双栈技术   双栈技术能彻底解决IPv4/IPv6共存的问题,但是需要全网路由器设备都支持双栈时才有效,对现有IPv4网络的改造要求高。是适合在IPv4骨干网全部改造后考虑的策略。   2.2 隧道技术   隧道技术是在IPv4/IPv6过渡阶段中,利用IPv4现有的网络资源开展IPv6业务的方式。由于现有的IPv4网络基础资源庞大,在IPv6发展过程中一定会有大量的隧道应用。正因如此,隧道技术倍受关注,且种类很多,下面分别对它们的特点和适用范围进行分析:   a)手工配置隧道直观、简单,但是管理开销大,适合在稳定不变的2个IPv6网络之间连接时使用。   b)兼容地址自动配置隧道仅适用于独立的主机站点之间,IPv4地址消耗大,扩展性差。   c)6 to 4隧道适于多个IPv6子网之间的互联,有公开IPv4地址的用户子网就可以自行配置,使用方便。   d)6 over 4隧道需要IPv4组播支持,无法在大规模网络中应用,适用范围小。   e)ISATAP可以支持通过NAT的IPv4子网连接,使用方便,适合在企业网络内部使用。   f)隧道代理适合独立的主机站点使用,可作为ISP提供给的业务,简化建立站点到IPv6骨干网连接的方式。   g)MPLS隧道提供了在IPv4网络中的高效隧道传送方式。MPLS隧道可提供比其他隧道方式更好的性能和优化的路由。属于需要IPv4运营商提供的业务方式。   2.3 IPv4/IPv6互操作技术   IPv4/IPv6互操作技术实现IPv6主机和IPv4主机之间的相互通信,主要用于在过渡时期IPv4用户访问有特色的IPv6应用,或IPv6用户访问丰富的IPv4应用。在IPv4/IPv6互操作技术中NAT-PT提供了较完整的网络层解决方案,可以支持一定规模的网络互联。BIA、SOCK64属于在应用层进行转换。需要对主机系统进行修改,这类方案取决于主机软件厂家,应用范围有限。 3、我国互联网IPv6过渡方案分析   3.1 我国IPv6过渡特点   在对IPv6的过渡阶段的设想中,普遍认为首先出现的将是许多小范围的试验性质的IPv6网络,这些网络通过IPv4中的隧道相连,并因此制定出了许多隧道互联的技术。由于我国投入资金进行了基于IPv6技术的CNGI网络的建设,我国的IPv6发展也因此将直接超越上述阶段。   CNGI一经建成,我国就将形成覆盖广泛的大规模IPv6骨干网,并且骨干网节点是通过IPv6电路直接连接的。因此隧道技术将不在骨干网中应用,各种隧道将主要用于实现用户和应用站点的接入。   虽然建成了较大规模的网络,但由于初期IPv6的应用不多,所以必须考虑IPv6与现有IPv4的互相访问。需要运营商在网中部署NAT-PT等网络协议转换设备。   因此,我国的IPv6过渡方案将主要涉及到用户接入方案和网络互通方案。   3.2 用户接入方案   未来互联网的用户主要将是宽带接入用户,对较大规模的纯IPv6用户接入,需要运营商部署专用的接入服务器,通过PPPoE等方式实现宽带用户的接入。接入服务器可直接为用户分配IPv6地址。对设有CNGI节点的城市,接入服务器可以采用直连电路接入CNGI的汇接路由器,完成用户的接入。对没有CNGI节点的城市或没有直连电路时,接入服务器可以通过现有的IPv4网络通过隧道方式连接到CNGI接入路由器。这时隧道可以选用手工配置隧道、MPLS等隧道方式。有IPv4接入资源的运营商还可以考虑对IPv4接入网进行改造,使得现有的IPv4接入服务器具备接入IPv6用户的能力。接入服务器应能根据用户认证情况分配不同类型的地址,并支持建立隧道将IPv6用户接入骨干网。   对应用站点,如果没有专线接入IPv6的手段。可以通过IPv4网以隧道方式接入。隧道也适宜选用手工配置隧道、MPLS等隧道方式。   对IPv4网中的双栈用户以及IPv4网络中的一些企业子网的临时接入,适宜采用6 to 4隧道、隧道代理、ISATAP等方式。为实现这类用户的接入。运营商应设置隧道代理、隧道服务器、6 to 4中继路由器等设备为其接入提供便利。   3.3 网络互通方案   目前的IPv4/IPv6互操作技术中,NAT-PT是比较成熟的网络协议转换技术。运营商可以使用NAT-PT实现IPv6网络和IPv4网络的互联。通过该设备连接IPv6网络和IPv4网络,配合DNS-ALG的设置,可以实现大多数互联网业务的互通。   对NAT-PT网关的设置位置可以考虑采用以下两种方案:   a)在IPv6骨干网主要节点设置少量设备,完成两网的流量互通。这种方式的设备投资少,但网内流量会产生非优化路由,而且在业务量大时,对NATPT网关的业务压力大,对设备性能要求高。   b)运营商在每个IPv6城域网设置NAT-PT网关,在城域网内与IPv4网互联。这种方案的缺点是投资较大。   运营商可以根据网络发展的不同时期选择不同的设置方案。 4、总结   IPv4向IPv6过渡是互联网发展的趋势,过渡阶段对网络的建设提出了许多新的要求。本文简要介绍了主要的IPv4/IPv6过渡技术,分析了它们的特点和应用方式,并对我国IPv4/IPv6过渡阶段的网络方案进行了探讨。希望可以为今后IPv6网络设计提供有益的参考。
作者:杨巧霞& &来源:中国联通网站
本页面信息由华强电子网用户提供,如果涉嫌侵权,请与我们客服联系,我们核实后将及时处理。
设计应用分类
DK系列电子整流器、节能灯专用开关晶体管、三极管参数资料。}

我要回帖

更多关于 别克昂科威两驱豪华版 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信